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The binary materials are characterized with the interrelated matter equations
which determine the dielectric and magnetic properties simultaneously. In these
media, the electromagnetic waves are described with the new Maxwell equations
solutions for example, in the form of the circular T,E,H-waves in the
inhomogeneous isoimpedance media. Medium inhomogeneity and impedance
constancy together create the unique conditions for the wave refraction with
minimal scattering on the magnetodielectric bodies. The binary materials and
circular (globally plane, sphere) waves are proposed for applications in antenna
engineering as the circuit components miniaturization, in electronic and plasma
devices, etc.
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INTRODUCTION

The creation of the radio electronic and electroengineering devices consists in
the choice of the geometrical, mechanical, physical characteristics of the
conductors, dielectrics, magnetics. The permittivity and permeability are contained
in different material equations

D =¢E,B =uH, (1
which determine the relations between electric field vectors D,E and magnetic
field vectors B, H separately.

Nowadays the great attention is devoted to the media which are described with
the interrelated material equations. Generally they may be called as binary
materials including following ones:

a) bi-isotropic (chiral),

b) segnetomagnetic,

c¢) inhomogeneous with wave constant velocity,

d) inhomogeneous isoimpedance.

The material equations system for bi-isotropic medium [1, 2] is:

D =¢E +«H,B =-«xE +uH, )
where coefficient K accounts the additional abilities of magnetic field to affect on
dielectric properties and also the electrical field on magnetic properties.

Segnetomagnetics are the crystals combining the properties of segnetoelectrics
and magnetics [3, 4]. The material equations system for them contains the tensors:

D=¢E+6H,B=BE+0H. 3)

The equations (2), (3) characterize the media with spatial dispersion. But in the
case of lack of the mentioned effect the material may be described with the help of
the interrelated material equation. It takes place if we use the coordinate
interrelation condition in addition to equations (1) for the inhomogeneous medium

and the following presentation of the ratio permittivity and permeability:

fle, (X,y,2),u,(X,y,2)]=0. (4)



The significant results were obtained for two particular cases of the functional
dependence (4): when the medium has constant wave number [5] and

u (x,y,z)=1/¢.(x,y,z), ®)
or constant impedance [6-8] and

W, (X,y,z) =€,(X,y,2).

The shown media properties will be touched upon in the first chapter. The
further chapters are devoted to detail description of the results in respect of the

isoimpedance inhomogeneous media and the circular waves discovered by author.



CHAPTER 1. GENERAL INFORMATION ABOUT BINARY MATERIALS

1.1. Chiral non-reciprocal media

The chiral media are described with the help of equations (2) where the non-
reciprocity of medium is shown due to different signs of coefficients K in two
equations. The variants of the real and image values of K are considered in details.

The media have spatial dispersion because the relation between D and kH

corresponds to the interrelation between D and spatial derivative for H in form of

Maxwell's equation j®wD = rotH . The last relation is owed to vector D value at

the fixed point of space depends upon vector H values in nearpoints continuum.
The most detailed analysis of the spatial dispersion problems has been conducted
for plasma. The lack of tensors in formula (2) allows us to consider the chiral non-
reciprocal media also as bi-isotropic ones. The interest to these media is real in the
optics where ones are called as optical active media. Besides, the chiral media are

considering as essential materials for radioabsorbing coatings for UHF devices.

1.2. Segnetomagnetic matters

Even in the past century it was marked that the bodies containing non-
symmetrical moleculae may be polarized in the magnetic field and be magnetized
in the electric one [3]. Later it was spoken out the assumption about existing of the
substances with the polarization and magnetizing are caused by means of the
electric field influence only. In the beginning of the sixties in the USSR it was

obtained the segnetoelectrics with magnetic order which were called as



segnetomagnetics. In foreign literature same matters are called as ferroelectrics
with magnetic order.

The system of the material equations (3) for segnetomagnetics is often rewrote
for the polarization and magnetizing vectors:

P=RE+k"H,M=kK™E+&k"H,
where K™ ,K™- are tensors of the magnetoelectric and electromagnetic
susceptibilities. The bibliography of the segnetomagnetic research up to 1989 is
contained in two books [3, 4] where more than 1100 papers have been shown. A
major attention of physicists and chemists is concentrated on the search of the
matters with the sufficient values of the magnetoelectric and electromagnetic
susceptibilities. Among possible technical applications of the devices in which the
electrical field controls magnetic characteristics or magnetic field changes the
electrical parameters were point out the optical switchers, phase shifters,
magnetoelectric converter, etc.

The important way of creation of the materials with an effective electric and
magnetic subsystems interaction is using of the composite structures from ferrit and

segnetoelectric films [4].

1.3. Inhomogeneous media with wave constant velocity

There are existing a great number of the papers on electromagnetic waves
investigation in the inhomogeneous media with continuos refraction coefficient
n=,/€ U, . A Helmholz's equation with varying wave number k =wmn/c, is
considered during the waves types analysis. Medium is usually considered as non-
magnetic one (W, =1), and variation of n =n(X,y,z) is owed to non-constancy

of permittivity €,.



Some waveguide systems with inhomogeneous filling are considered in
monograph [5]. If we guess that € (X,y,z)U (X,y,z)=const, (by using
condition (5)) then we may use the constant wave number in the Helmholz's
equation and the analysis of the E;H-waves becomes simpler. It gives a possibility
to build an algorithm of the medium synthesis according to the nessesary wave
impedance dependenceZ. =+/lL/€. So due to no information about the real
material created under equation (5) realization in work [5], that applied aspects of

these results aren’t clear.

1.4. Some media with special properties

The investigation on problem of the creation of some media with the special
properties are closed to considering problem of the binary media description and
creation. The methods of creation of the ferromagnetic materials by means of the
magnetized and isolating particles mixture have almost one hundred years history
[9-13].

The essential reduce of the energy losses is provided in magnetodielectrics or
ferrits are the most known class of the high frequency magnetic materials. The
investigations on production of the dielectrics with new properties are conducted
parallelly [14-18].

The greatest number of works is doing now for the investigation and the
utilization of the hybrid properties of the materials and the affections on them. Let
us note only few of these directions. It is possible to affect on matter optical
properties with the help of outer magnetic field [19, 20]. Devices are using the
magnetostatic waves in iron-ittrij garnet will be useful for microwave engineering
[21]. The important applications of the magnetic liquids take place at lower
frequencies [22, 23].

A lot of papers are devoted the nonlinear properties matter application for wave

processes transformation at very high frequencies including optical band [24-28].



The problems of bi-isotropic (chiral) media [1, 2, 29-32] and segnetomagnetics
[3,4,33-35] researches are more closed to the problems of the isoimpedance
electromagnetic media creation.

In order to develop works on artificial isoimpedance media, one can use the
results on artificial dielectrics and magnetodielectrics realization [36-43]. Before
inhomogeneous isoimpedance media will be created, it is necessary to come throw
a stage of homogeneous media creation with dielectric and magnetic properties
combination. The ferromagnetism phenomena is absent on high frequencies
[44,45], therefore the magnetosoft materials may exist when we use the frequencies
no more then few hundreds MHz [9-11]. The known method of the compositional
materials fabrication is method of their creation from plates, rods [46-50] and a
transition to smooth inhomogeneous media [51,52]. It is important to research the
powdery ferromagnetics and dielectrics and it will be useful the results of powdery
dielectric application in antenna engineering [53] and some ideas on dusty media

creation with combinational properties [38,54].



CHAPTER 2. WAVES IN THE ISOIMPEDANCE MEDIA

2.1. Globally plane and sphere waves
The traditional representations of the plane and sphere waves with transverse

intensities
E, =E ™ H =E Z ¢/ (2.1)

are corresponded to plane-parallel fronts when { =z ( Fig.2.1,a ) or to sphere-

parallel fronts when { =r1= \/ X + y2 +7° (Fig.2.1,b). The energy propagation

takes place in the homogeneous medium with wave impedance
Z, = ule=27Z,\un, /¢, (2.2)

along the parallel straights (z) or along the divergent straights ( r-rays ).

:I‘:C

H‘f ||

Fig. 2.1

The phase velocity is equal to
v=w/k=1/\jue=c_ /ne =c, /n. (2.3)
If the longitudinal components are equal to zero(E, =0,H, =0), in the

electromagnetic wave that the equations (2.1) are corresponded to transverse type
(T) wave. By E, #0,H, =0 or H. #0,E, =0 we have the electrical and

magnetic wave types for which we guess that k in formulae (2.1) as longitudinal

wave number and to use impedance ZCE or Z? instead of magnitude (2.2).

Approaching the consideration of the waves in the inhomogeneous media we

mark the cases when the intensities representations (2.1) are justified also.
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According to well known geometrical optics method the equations (2.1) give the
local plane representation for the wave in medium with slow refraction coefficient
n(x,y,z) variation.

The author develops other direction which begins from a question: what are
media where wave with intensities (2.1) will has non-local but global plane or
sphere fronts ? With account of the demand of the orthogonal disposition E ,H
to unit vector ZO it needs to consider a problem with the utilization of the
orthogonal curvilinear coordinates &,m,{. Therefore from infinite number of
situations with { =C as planes and spheres it is necessary to select only cases

when surfaces £=C,n=C,{=C ( where {=C are planes and spheres )

perform three-orthogonal surfaces system.

4

<D
a)

C=0=

I

p

A

=

\¥—/

¢=C (=C

Fig. 2.2

11



The problem in given geometrical recognition has been investigated else in
[55,56] where was shown that the plane or spherical basics make four new families
shown on Fig. 2.2. in addition to two families represented on Fig. 2.1. The plane-
base (PB) and the sphere-base (SB) coordinate systems are described with details
in [7,55,56]. The general research of global plane (sphere) waves in the
isoimpedance inhomogeneous media was made later in [6-8,57] where terms
neoclassical or circular waves were used.

As was found to that all six classes of global plane (sphere) waves demand for
their existence of fulfillment as the isoimpedance medium condition

w/e =7, =const, (2.4)

so and the condition of matching with metrical coefficient ( Lame's one ) for phase

front families = C:
e, (En,0O=w.En=h,/h, (2.5)

where hcc - numerical value of Lame's coefficient in a some point of space.

The waves with plane-parallel and sphere-parallel fronts (Fig.2.1,a,b) are
observed in the homogeneous medium where conditions (2.4),(2.5) are
Z.=7Z,,¢, =W, =h,=h, =1.The waves with plane-axis ( Fig.2.2,a), sphere-
point (Fig.2.2,b), sphere-axis (Fig.2.2,c), bi-spherical (Fig.2.2,d) fronts take place

in the inhomogeneous isoimpedance media where equation (2.5) is appropriately:

PBIle, =u_=a/p,p=+x"+Yy°, (2.6)

SBlLe =y =a’/r’,r’ =x+y’ +z°, (2.7)
SBIILe, =y, =c>/+/(r’ +a%)’ —4p*a’® (2.8)
SBIV.e = =c?/+/(t> +a>)’ —4z%> . (2.9)

On shown figures double pointers correspond to the Pointing's energy vector lines,
i.e. to the energy flows. The ability of choice of the different constants a, ¢ in
formulae will be considered later. Each of six global (sphere) waves classes has
four subclasses which according to known terminology are called T,E,H,EH types

of the waves. The calculating formulae for transverse intensities components in E-

12



wave are obtained in [7,8,57] from the Maxwell's equations in PB, SB coordinate

systems of the following form:

E;/Z; =H, =-joe,0U},H; = joe,cU, =-E//Z, (2.10)
where Z¢" =B/we,,1/0= hCCh(ké —B) = hCChyz,U =hE,, (2.11)
or for f-wave:

Eg /Z? = HTI]{ = —jBGVY;,—EE /Z? = HaH =—jBoV,, (2.12)
where Z =W, /B, V=hH,. (2.13)

The functions U,V are determining according to (2.11), (2.13) the field vectors
longitudinal components and according to (2.10), (2.12) transverse components,

have the view:

U — u(g’ n)@j(wt_hCCBC) , V — V(g, n)ej(wt_hCCBC) , (2 14)
where u(&,m) or v(€,M) are two-dimentional equation
u; +u; +h’ey’u=0. (2.15)

solutions. Now it therefore remains only to recognize the boundary problem for

equation (2.15), including the data about guiding conductors, to find the

longitudinal wave number 3 and functions u,v in order to have all components of

wave intensity vectors from (2.10)-(2.14).

The only change of the constant nearby ( takes place in phase multiplicator (2.14)

during the generalization of representation (2.1) for 6 X4 variants of global plane
(sphere) waves.

The circular waves also exist in the inhomogeneous anisotropic media if for

components of tensors €, [1, from the material equations of media

D=¢E

1
1] MW
o4
M-
:m
e
o
[l
>
|
[l
M-
g4
-
=
T

the relations
h38nv = h3C8§v’ h3”‘nv = hsc“fv;na\’ =1,2,3,
C C C C
831 =832 =07M31 =M32 =O, (216)
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are valid in the case when SSV,MSV are constants. If these numbers no depend on

frequency (0, one can put B =m/en and take =k, =w,/€ W, without the

generalization limitation. The requirement of the Maxwell's equations system

compatibility leads to relationship between numbers ng , va :
C c ,cC c ,,C C
My _ € My _Ep My _ &y _ oC,,C c,,C
C T c ¢ oMo TEMy TER,. (2.17)
Ry &y My & Wy &y

The relations (2.16), (2.17) for the plane-parallel and sphere-parallel T-waves were

obtained earlier [58].

The circular waves have a lot of properties of the waves in homogeneous
media. So, for circular T-waves the known properties of usual T-waves are
observed: a) the frequency independence of force lines structure, b) the impedance
independence from coordinate of point observation, c) the real character of
impedance and coincidence on the phase electrical and magnetic fields intensities,
d) the ability of transmission line theory application with voltage, current,
inductances, capacities introduction, etc.

The phase velocity of circular wave is calculated similarly to (2.3) with take
account of (2.14):

v=h{ =hw/h p=w/pe,. (2.18)

The energy transmission velocity also is different in different points:

[,  ReExH)/2 _ 1 _ch, _

p

R O B YT N

v, = (2.19)

2.2. Isoimpedance media and bodies

Let us now consider the properties of those isoimpedance media which due to

relations (2.6)-(2.9) provide the plane or sphere character of wave front in the total

variety of points on surface { = C (Fig.2.2). As theoretically so as practically it is

convenient to describe four variants of isoimpedance media with the help of the

surfaces of the equal magnitudes permeabilities.
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2.2.1. For inhomogeneous medium with parameters (2.6) the circle cylinder

surfaces P = C are ones of constant values of €, . Choice of some radius a
means that we have the decelerating medium with € = >1 when p<a and
the accelerating one when P >a. The continuous reverse proportional relation
(2.6) may be realized in the stratified magnetodielectric with cylinder layers of
constant values € =W . The half-planes { = arctg(y/x)=C are orthogonal to

surfaces € =, = C as the phase fronts of plane-axis waves (Fig.2.2,a).

2.2.2. The medium, characterized by functions (2.7), has the concentric spheres
r=C as the surfaces of the equal values € =W _= C. The step-stair realization of
this medium is consist of sphere areas. In the points when r<a, the medium is

decelerating (n>1) and accelerating (n<1) when r>a it is. For sphere-point waves

(Fig.2.2, b) phase fronts are spheres C =2/ > = C, which are not orthogonal to
g

the spheres of the equal values €, =t =a’/r> =C.

2.2.3. We have possibility to take constants a,c in the relation (2.8) so that

demarcation surface € =W =1 becomes having some geometrical variants. For

surface € =€ __ we have equation
(P> +2°)’ —2a*(p*—z")=c'/e’ —a’, (2.20)

which determines the known Cassini's curves families (Fig.2.3) on the plane O, Z.

28046 I I Al 7 I I

-3.3045 |
48025, 48025,

Fig. 2.3
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Surfaces € = € _ are created with the help of Cassini's curves rotation around axis

z, i.e. they are surfaces of rotation. Four different forms of Cassini's curves are

shown at Fig.2.3 that allows to choose the demarcation surface € =u =1

represented in four views: a) oblate ellipsoidal when ¢ > a\/§ , b) ellipsoidal with
recess by a<c< a\/z , ¢) ellipsoidal with minimum recess (point p=z=0

) by c=a, d) like thoroid when c<a. Shown on Fig.2.3 points M in cases a)-c) have
coordinates z=0,p=a+1+ c’/a*, and in case d) coordinates are
z=0,p=a+1- c’/a’. The isoimpedance medium, located inside surface
€, =MW, =1, is decelerating (n>1), and located outside is accelerating ( n<1 ). We
note that the phase fronts { =C of the sphere-axis waves (Fig. 2.2,c) are not

orthogonal to the surfaces € =, =C.

2.2.4. The medium with permeabilities from (2.9) has surfaces of the constant
value permeabilities with equation
(z>+p*)* —2a°(z’ —p*)=c*/el —a’. (2.21)
Obviously, in the equations (2.20), (2.21),we need to make the substitution of P, Z.
The surfaces € =€ _ are formed by means of Cassini's curves rotation, shown on

Fig.2.3, corresponding to the horizontal axis which is axis z after exchange of the

variables. Now surface € =W, =1 may have four following views: a) a lengthen

ellipsoidal if ¢ > a~/2 , b) a lengthen ellipsoidal with waist when a < ¢ < a~/2 ,C)
two dropview surfaces with common point P=2z=0 if c=a, d) two separate
dropview surfaces when c<a. The shown demarcation surface divides total space
on decelerating inside medium and accelerating outside one. The phase fronts of
the bi-spherical waves (Fig.2.2,d) are not orthogonal to surfaces € =W =C,
shown on Fig.2.3.

We can make “separations” from infinite inhomogeneous matter and fill the remain
part of space with an air. If it is made over surface € = =1, that the
continuation of permeabilities on boundary is provided. We have isoimpedance

decelerating body by means of leaving of the inhomogeneous material inside

surface € =U, = 1. If, on the contrary, an air is inside demarcation surface, we

16



have cavity in the accelerating inhomogeneous medium. It’s possible to have some
intermediate variants: the air cavity in decelerating-accelerating medium or the
decelerating-accelerating coating in an air.

The electromagnetic field in the isoimpedance body of finite size will be a

circular wave when the waveguiding conductors are used additionally.
2.3. T-waves in the inhomogeneous media

The T-waves with plane-parallel phase fronts which are used in all feeders:
multiconductors lines, coaxial cables, etc. are known mostly. The waves with
sphere-parallel fronts are guided with multicones conductors with divergent (ray)
currents [56,59]. Let us now consider in greater detail four classes of T-waves in
the isoimpedance inhomogeneous media which were described above.

The PB, SB coordinate systems application, where hg = hn =h, allows to

represent Maxwell's equations in convenient form [7,57], we have equations for T-

wave (E, =0,H, = 0=k, = ﬁk/@):

(hE, ),é = (hEé):], (hE‘z)'é =—(hE, ):],Eé =Z,H,.E, =—7,H.. (2.22)
The intensities components are determined with the help of the analytical

function of complex variable W (& +in):

. . —ikohecl
h(E, —iE,) = W(E +in)e ", (2.23)
2.3.2. The simplest circular wave is one rotating along coordinate { = @ in the

isoimpedance medium with permeabilities in (2.6). If the indicated material fills a

space between two coaxial metal cylinders with radii p=p,,p=,, the field

intensities are equal to

E=E =-ZH, =U(p,-p,) e ", (2.24)

where U is voltage between two conductors. Formula (2.24) is written with

using of the formulas (2.22), (2.23), accounting the equations {=z,n=p,h=1.

In accordance with formulas (2.18), (2.19), the linear phase velocity and the

velocity of energy transmission are V=V _=c,0/p,. They are maximum, if

17



P=p0,, and minimum, if P=pP,. As is well known, the expression
¢ =arctg(y/x), is the uniquely determined function only in the case when
0 <@ <27 . Practically a circular wave with intensities (2.24) may be realized, if
to take energy from source which is coupled with half-plane () = O. Further the
wave transmits this energy along circle toward to the resisting wall coinciding with
half-plane @ = 27.

Consider now the circular T-wave followed the currents in thin wire winding
immersing in the isoimpedance medium with perameabilities (2.6).

Two loops with radii P, and Q,, placed in planes Zz=127, and Zz=12, are

represented at Fig. 2.4,a.

z 2
pl "
s 7
_—/ =
H( \*ﬁ - = "
O pl
p2 Q}"J b)
-
\ 4
Y
00000) (00000
a)
00000) OO0
Y
pl

Fig. 2.4

The circular wave is running in direction from generator to load, and an
influence on the field of the opposite directed and nearly placed currents in the
generator and load may be neglected. In accordance with (2.23), we have equations

for field intensities:
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1 1
E =7ZH =E.p, T4 2 2 ? a8
. o p{(z Z)LZ—ZJ +(-p,) (z-z) +(P+p,) }

—(z—-z ){ ! — ! }}e‘ﬂ%a“’ (2.25)
Nz-2)+(-p,) (z-2,) +(+p,)’ ’ '

p_p1 p+p1
E =-ZH,=Ep,[ - _
P a2 +p-p) (z-z)+@p+p)

p_pz p+p2 -jk,a@
— + Jle ", (2.26)
(Z_Z2)2 +(p_p2)2 (Z_Z2)2 +(p+p2)2

where the radius a corresponds to cylindrical surface which separate the

decelerating area (p<a) and the accelerating area (P >a) in the infinite

isoimpedance medium. In writing formulas (2.25),(2.26) we have taken into

account formula (2.23) for p — 0 when we have the perfect conductor filament

(€ — o0), where, according to (2.25),

p1 pz —jkoap
E =0,E =-2E — e .
’ ’ 0p1|:(z Z1)2 | p12 (Z Z2)2 | pi}

The fields, creating by currents of two cylindrical (Fig.2.4,b) or plane

(Fig.2.4,c) windings from w turns, are finding with the help of formulae

(2.25),(2.26). We have at first case:

w w
— —jk,ag, _ —jkoatpz —jkoa(n-1)2m
E o Ze EZn =¢ c Ezn )

— n=1
Ep — e—jkoacpzv:e—jkoa(“_l)anpn ,where (2.27)
> (=1)" (-
E, =Ep,(z- -
=Bz Zn);Lz_zn)z +(p=p,)’ (2=2,)"+(p+p,)’
S DM -py) (D" (p+p,)
- . B v ’ 2.28
on 0p1vz;|:(z_zn)2+(p_pv)2 (Z—zn)2+(p+pv)2 ( )

where z_ =nb and number b is wire diameter. It was considered in (2.27), (2.28)
that the angle coordinate for a turn with number n is @_ =@+ 27(n —1) where

0 < @ < 27 corresponds to the first turn.
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The phasing mode is of interest in its own right when radius a of surface

€, =W, =1 is chosen according to condition of the “matching” with wavelength
A, =c,/f:

a=mA,/2m. (2.29)
In the case of fulfillment of the equation (2.29), the intensities are maximum
because of summation of the uniphase (real) summands (2.28) in the (2.27).

The plane windings application (Fig.2.4,c) is accompanied with formulae

(2.27) where, instead of formula (2.28), it is necessary to take
. 2 _1\v-1 _ _1\v-! _
B =E0ple_Jk0a¢Z{ D7@-z) ez 2}’
(z=z,) +(P-p,)" (z-z) +(P+p,)

E :Epe—jkoa(pi D" (p-p,) _ D" (p+p,)
o z-2,)+(-p,)’ z-z,)+{E+p,)

v=l
In the formulae (2.30) we need to consider the relation p, =p, +(n—1)b.

(2.30)

2.3.3. The sphere-point T-waves may be observed in medium with
permeabilities (2.7). If coordinates SBII [56]
E=x/r’n=y/r*,{=z/r’,h=h =1 (2.31)
are used, one of simplest waves is T-wave which according (2.23) has intensities
E.=ZH, = anzlr_ze_jkoazc = EO:«,lzr_ze_jk‘)‘?'22/r2 : (2.32)
The phase fronts are spheres { = C tangenting each other in the point x=y=z=0

(Fig.2.2,b). In accordance with (2.18), (2.19) we have for the velocities
V=V, 6 =¢,/€, =C01‘2/ a’, Poiting's energy vector lines are circles which are
started in point r=0 when z<0 and are finished in same point but when z>0. Since,
according to (2.32), the electrical field intensity wave vector is orthogonal to

surface §=x/ r’ =C, that the complete metallization of two these surfaces

doesn't affect on the T-wave structure. Hereby, the T-wave will propagate in the

screening volume between two spheres x/r’=C, and x/r’ =C,, which are

tangented in the point x=y=z=0 geometrically( but not electrically).
One more example of the sphere-point T-wave we have by using of another

SBII class coordinate variant [56], namely:
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E=In(ap/r’),n=arctg(y/x),{=z/r*,h= p,h, = re. (2.33)
Surfaces &= C are thoroidal ones without hole, immersing each in other so that
their common point is x=y=z=0. We have relations for intensities:
E. =Z,H, =Ejap e "

2.3.4. The sphere-axis T-waves, transmitted an energy around circle line p=a

(Fig.2.2,c), may exist in the medium with permeabilities (2.8). Let us use one of
SBIII coordinate variant:

& = Arch[(r? +a?)/2ap],n = arctg(y/x),cos{ = (a* —1?)/4/(a> +12)* —4a’p>
h =p =a/sh&(cthf —cos{),h, = hshf = J@® +1?)? —4a’p* /2a. (2.34)

In space between perfect conducting thoroids &= C,,€=C, along lines C, i..
along small radius circles, T-wave is rotating, and it has intensities

E, =Z,H, = Egap e ™ /2, (2.35)

where constant ¢’ corresponds to formulae (2.8),(2.20). We have for velocities

v=v, =c/g = CO\/(r2 +a”)’ —4a’p’ /c”. Since the consideration of equation
(2.20) it was explained that there are exist four variants of values —*/a’, to which
four variants of values € (p,z) =W, (P,z) are correspond to the matter filling a
space between the thoroids.

It is interesting to excite sphere-axis T-wave with the help of two thoroidal

windings, each of them has w turns. The turns placement planes are specify with

the help of the angle coordinate 1M from (2.34) as the relation
N=0¢, =@, +(n—-1A@, where magnitude A@Q determines wire ratio diameter.
Taking into account the demands of symmetry by coordinate E_, and periodical

behavior to coordinate 1], we have equation , according (2.23):

E, —iE, = Z,(H, +iH,) = Ee ™ *ap™ x (2.36)
w2

X33 (D' {=cth[E-&, +i—-n,)]+cth[E+&, +im-n) ]
n=1v=l1

The windings occupy a sector of angles from @, to @, +(w —1)A@ becoming in

all thoroidal windings, when @, = AQ, WAQ = 21.

21



2.3.5. At last, bi-spherical T-waves in medium with permeabilities (2.9) are
analyzed with the help of SBIV class coordinates:
2 a2 + 12
\/(rz _az)z +4azp2 ’
h =a/ch&(chl —thf),h, =a/(ch{ - th). (2.37)

’—a

€ = Arsh M= arccosi,chc =

The simplest T-wave transmits an energy along parts of circles { = var from point

x=0, y=0, z=-a to point x=0, y=0, z=a. The field intensities are
a2

E, =ZH, =Eh&(chl - th&)e *“"*** where constant ¢’ is corresponded to

equations(2.9),(2.21).
2.4. Electrical and magnetic waves

2.4.1. The electrical and magnetic waves with plane-parallel fronts are widely
used in the microwave waveguides. The sphere-parallel phase fronts are observed
for E,H-waves with small radial intensities components radiating by all antennas.
Let us now consider four classes of E,H-waves in the isoimpedance media with
permeabilities (2.6)-(2.9). The general view formulae (2.10)-(2.14) are justified for
all cases, it is necessary only to apply the variable separation method to equation

(2.15) in order to have formulae-solutions.

According to variable separation method the equation (2.15) solution is finding

as series

u@&n =2.0,&w,m,
that leads to two separate ordinary differential equations
@; +[p&)+m’Jp=0, (2.38)
v, +[qgm) -m*Jy =0, (2.39)

if medium and PB,SB coordinate systems variant allow to separate the variables in

coefficient y°e’h’ = \(zhzhéC / hz =p&)+qn).
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2.4.2. In coordinates PBII, when &=2z,m=p,h> =1, and for medium with
permeabilities (2.6) we have p(§)=0,q(n)=7Y’a’/n’, hence equation (2.38)
solution is @, =exp(*jmz/b), and equation (2.39) acquires a view
Ny, +(y’a’ —m™’ /b’y =0, (2.40)
where unitless character of number m is provided with the help of constant b. The

equation (2.40) solutions are elementary functions [60] for proper transverse wave

number Y magnitude. So, for a2y2 =n(l—n), where n-natural number, we have

1dY o
vy, =p"| —— (Clem"’b +C,e "’b). (2.41)
pdp
If a*y> = —n(l+n), that
n+l
1d)" o
Y= pn+1(__j (Clemp/b +Ce p/b)
pdp
The simplest E,H-waves are ones which have intensities non depending from
coordinate z, that take place for m=0. In this case equation (2.40) solutions are
described by expressions
C, cos(klnp/b)+C, sin(kInp/b),k* =y* —1/4>0,
v=4p Cp +Cp ™, K> =1/4—9* >0, (2.42)
C, +C, In(p/b),y* =1/4.

For example, let us show the calculating relations for circular E,H-waves in coaxial

resonator between two perfect conducting cylinders P =pP,,0 =p,. A boundary

condition for electrical waves is Y =0 for p =p,,p =p,. The simplest E-waves,

non depending from coordinate z, in accordance with (2.10),(2.11),(2.40),(2.41),

are specified with formulae:

E, =p"*sin[8(p)le***,8(p) = nIn(p/p,)/In(p, /p,)
iBp, I(PE,) jwe,p, O(PE,)
E =— 22 ° H= o2 °

S s Y op
The boundary conditions give for transverse and longitudinal wave numbers:
y=2mp, /A, B =1k —4m* /)2, (2.43)
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where critical wavelength for some n ( n=1,2,... ) is number

A, =2mp,/1/4+[nn/In(p, /p, )] . (2.44)

Since consideration of the circular waves in channel waveguides,

corresponding to PBII, SBIII classes coordinates, the variation area of variable C

must be finite (0 <{<27). As untraditional condition we have a demand of

circular  wave  auto-phasing in  view of  periodicity  condition
Bh. (€ + 2m) = Ph + 27, which for considering E-waves gives

Bp, =1. (2.45)
With account (2.43), (2.44) from (2.45) we have for frequency
f =co/(2MP) 2+ 272 . (2.46)

It is not difficult to see that wavelength A, =—,/f for auto-phasing
frequency (2.46) satisfy the condition A, <A _.

For paraboloidal coordinate system from class PBII, specifying with formulae
(E+in)° =2(z+ip),{ = arctg(y/x), we obtain
hih?/hi =a*(1/& +1/m%),p(§) =y’a*/&,qm) =y’a’ /7,
hence both equations (2.38),(2.39) have a view likes the equation (2.40). As for
expression (&) finding so as for (1), we can use formulae (2.41),(2.42). The
boundary surfaces for the E,H waves are paraboloids of rotation & =C or 11=C

Third coordinate system from class PBII, introducing with the help of relations
(z+ip)/a =sin(§ +in), {, has the relation

hih®/hi =a’(1/cos’ &+1/sh™n),

therefore equations (2.38),(2.39) acquire a view:
@; +(m’ +y7a’/cos’ E)p=0,y] +(-m’ +y’a’/sh'n)y =0. (2.47)
In some cases the equations (2.47) solutions are writing as simple expressions

[60]. So, if transverse number Y is chosen from condition v’a’ =n(l-n),

where n-natural number, we have

n 1 d ' -m —&~/—m
@ =cos F,(COS &d_ﬁj (Cleér +Ce ) (2.48)

24



Note, that the coordinate surfaces &= C are hyperboloids of rotation and
n= C are lengthen ellipsoids of rotation.
One more coordinate system from class PBII, when (p+iz)/a =sin(§+in),

determines surfaces & =C as hyperboloids of rotation, and 1 = C are oblate

ellipsoids  of rotation. The coefficients in equation (2.5) are
yzhéch2 /hz =v*a®(1/sin’E—1/ch’n). Hereby obtained equations (2.38),
(2.39) are similar by view to equations (2.47) that allows to use formulae (2.48).

2.4.3. The sphere-point E,H-waves research is making with coordinates SBII
participation specifying by means of formulae (2.31),(2.33). In first case
h? /hé = l,héC =a’, hence equations (2.38),(2.39) are

@ +(y’a’ +m*)e=0,y; —m’y =0. (2.49)

The equations (2.49) have constant coefficients, therefore the solutions are
exponential  functions. According to coordinates (2.33) we have
héch2 /hé =a'p? /1" = a’e”, and the equation (2.38) is the following:

¢l +(y’a’e™ +m*)@ =0, (2.50)

but equation for (1) looks like as in formulae (2.49). For m=0, the equation
(2.50) solutions are expressing with the help of the elementary functions, and for
m # 0 it is necessary to use Bessel's functions [60].

2.4.4. The class of SBIII coordinates, given by formulae (2.34), is used for the
sphere-axis [E,H-waves analysis. As h”/ hz =1/ Shzé‘;,hgC =c’/2a the
equations (2.38),(2.39) are:

@; +(m’ +y°c*/4a’sh’E)e =0,y; —m*y =0. (2.51)

The choice of constant ¢*/a’ may be different that was explained for formulae
(2.8),(2.20). The first equation from (2.51) is similar to second equation from
(2.47).

2.4.5. In class SBIV coordinates the bi-spherical E,H-waves are specified. With
account of relations h*/ hZ =1/ch’€, h = c’/2a equations (2.38),(2.39) are

obtained in view
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@ +(m* +y’c*/4a’ch’€)@ =0,y —m*y =0. (2.52)
The equations (2.52) analysis is similar to equation (2.51) one.
Therefore, at least, for shown coordinate systems variants ( four from class
PBII, two from class SBII, one from classes SBIII, SBIV ) analysis of E,H-waves
in corresponding isoimpedance media we may do entirely with the help of (2.10)-

(2.14) because variables separation method is applied to equation (2.15).
2.5.Media with factorizied permittivity/permeability ratio

2.5.1. The generalization of relations (2.4)-(2.9) is the following equations for

permeability and perrmittivity:
u/e=A)BEM). (2.53)
e=0a"(OP(En)/h (M, O),u=0a"(OB"(En)/h, (2.54)

which we shall consider in six classes of PB,SB coordinate systems. In accordance
with (2.54), in classes of the PBI,PBII,SBI coordinates we have factorization for
permittivity and permeability separately. It is not justified for the media, describing
in SBII-SBIV coordinates, due to impossibility to do factorization of Lame's
coefficient h C(éf;,”r], C). Shown media allow the existence of new wave variants
that below will be represented as generalization of results for global plane and
sphere waves.

If to determine any wave type impedance as electrical and magnetic fields
intensities transverse components ratio, the considering media may be called ones
with factorizied impedances. It take place as due to relation (2.53) so due to Lame's

coefficients property h e = hn = h for transverse coordinates of PB,SB systems.

The reference of these media to binary ones is owed to relation(2.53) which
will be further specified when functions o/"™ ({),B“™(€,1) will be determined on

dependence of propagating wave type.
Let us now consider the general investigation of classical problem about

possibility of scalarization of the electrodynamical vector equations.
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2.5.2. The scalarization problem is one of transformation of Maxwell's
equations system into separate equations for field vectors coordinates components
which for homogeneous media had been considered by Abraham, Bromwhich,
Debau [64]. Let us research the problem for generalized media with permeabilities

(2.54). We are starting from Maxwell's equations system, which is wrote for
calculating intensities vectors components E ,H (v =§&,1n,{), which linearly

depend on physically existing components E ,H :
E =hE ,H =h H,
where h, -Lame's coefficients (h, =h, =h = p(€,M)h ¢ )- Namely:

oH, oH,6 . | oH, oH, .
== jOK E§:0, T _J(DKeEn:O’

an  d¢ ol dg
oH, oH, . , JoE, OE, |

t———=—jopK’E, =0, ————"+jok"H, =0,

05  dn on  dC

oE, OE, . oE, OE, . , |

— -~ tjox"H, =0,— ' -——=+jop’k"H, =0,

I 2 Ot om

(KEE§)§ + (KBEn )/n + pz(KeEC)Q/ =0, (255)
(KmHa)g + (K‘“Hn)n + pz(KmHC)g =0,
where, for permittivity and permeability of medium, formulae (2.54) were taken
into account and also denotations are used:
K*=he=0a(OP(En), k" =hu=a"(B"(En). (2.56)
The scalarization procedure will be discovered the most evident after creation
from transverse components E.,E, and H.,H  the complex-spatial transverse
intensities (binary ones) E = En + iEa,H = Hn + ng which are functions of
longitudinal coordinate C and complex variables Y =E&+in,¥=&—in. Let us

collect from eight equations (2.55) the four systems of pairs:

JE. OE J(k°E,) O(x°E J(k°E
08 on o0&, on dg
H H "H "H "
a_n_g:jﬂ)KeszC,a(K §)+8(K ﬂ) :—pzM, (2.58)
o om ¢ om d¢
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OF O, OE, OB

" _jok"H, = —>,—=+ jox"H 2.59
OH, . OH, oH, OH,

1+ JoKE, = —Jok°E, = (2.60)

e an 8C a&

With using of known complex derivation symbols

20/dy=0/0E—id/dn,20/d7y =0/ +id/an,
we exchange each pair from (2.57)-(2.60) with one complex equation:
2E; + (Inx*)’E - (Ink°), E = —jox"p°H, —ip*(«°E,); / K", (2.61)
2H; + (Inx™);H - (Ink™)' H = jox°p’E, —ip”(K"H,)} /", (2.62)
E} +ijox"H =2i(E,)’, (2.63)
H —ijox’E = 2i(H,);. (2.64)

Consequently, the scalarization problem is recognized as problem of Maxwell's

equations system (2.61)-(2.64) transformation in separate equations for four
intensities calculating components EC,HC,E,H with account, if it will be need,

the boundary conditions. It is possible to recognize a problem variant when it is
sufficient to have the separate equations for EC’HC’ assuming presence of

function EC’ as known solution, in the equation for E.

2.5.3. Let us, at first, make the equations (2.61)-(2.64) research for T-waves
when E, =0,H, =0. From (2.61),(2.62) we have the system

ZE:7 +(Inx* );E —(Inx* );E = O,ZH:7 + (anm);H— (anm)'Yﬁ =0, (2.65)
and from (2.63),(2.64)we obtain:
E’C +ijok™H = O,H’C —ijok’E =0. (2.66)
The general expressions (2.56) will be used after analysis of a simpler ones.

a). At first, they have to be the constants: K° =€ h CC,K =U,h «c- With these

values the equations (2.65),(2.66) solutions are described with the help of formula
E=1ZH = e_Jk"hCCCW(Y) which determines all six classes of T-waves in

homogeneous and inhomogeneous isoimpedance media, when € =W, =h,. /h,.
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b). Let us consider auxiliary functions K°, K™ which are depended from the

longitudinal coordinate { only: K°=%K°({),k" =K™({). The electrical and

magnetic fields dependence from transverse coordinates will be same since

E =iZ(Q)H = W(Y)L(C) = Z(OIM(OW (V)] (2.67)
where Z=L(0)/M({)=E/iH performs a role of medium impedance for T-
wave. Substitution of (2.67) in (2.66) leads to two differential equations of second
order:

L/ k™), +0’k’L=0,(M; /K°); + 0’ k"M =0. (2.68)
These equations will have varying coefficients if at least one of functions Ke, K™

is not constant. Note that in literature [46,47] waves in the inhomogeneous media

are described with Cartesian or spherical coordinates only, when { =z or { =T,

and a medium has only inhomogeneous permittivity €. = K°({)/€,.

Especially we consider the isoimpedance medium with parameters

g, =M, =x(Q)/gh, =x"(C)/uh,. (2.69)

The relations (2.69) are more general than equations (2.6)-(2.9). Hereby from
system (2.68) we obtain one equation:

(L% /), + [0’k (§) /g, JL=0. (2.70)
According to (2.70), a dependence on the longitudinal coordinate { for new T-

waves in the isoimpedance medium may be taken arbitrarily differing from
function exp(—jk,h CCC). It is necessary to give desired function L =L({) for

(2.67), and than we consider equation (2.70) as nonlinear differential equation of
first order for K°({) which will be used in (2.69) during binary material
realization. Phase fronts { =C ( Fig.2.1,2.2 ) are caused by previous relations
C ={(X,y,z) but field intensities are non- exponential functions of variable .

c) Let the relations K°=%k°(§,1m),k k"™ zeouohéc take place and medium

parameters are equal:
e, =k (&) /eh (EN, 0.1, =gh /x EmMh (EN,D). (2.71)

The fields intensities are obtaining in accordance with formula
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E=¢*"“*W(y,y) =iZ(E mH, (2.72)
where impedance Z depends on transverse coordinates E_,, T only:
Z=h ey /K (EM) =K"Th e, =Z\ 1, /€, . (2.73)

The complex potential W = W (y,Y) is generalized analytical function of two

complex variables Y,Y satisfying the equation
2W, +(Ink*), W — (Ink°),) W = 0. (2.74)
Therefore, one taken real variable function K° = k°(&,1) determines according to

(2.71) binary medium parameters. Appropriate T-wave is described with formulae

(2.72), (2.74) having according to (2.73) the transverse-inhomogeneous impedance.

d). The great variety of T-waves variants is possible in medium which has the
parameters with arbitration for two functions:

€, = OC(C)B(?;,T])/EOhC,].Lr = Ocsohéc /hz;B- For intensities E,H and impedance

Z. we have relationships

E= L(C)W(Y7 ?) = IZ(§7 n)H , L= hQC V €l /B(&ﬁ 7]) , where

¢
L=exp[—jk0hCCJOL(C)d§] and generalized analytical function W(Yy,Y) is
0

solution of the equation 2\7% +(1nB);W— (lnB);W:O.
2.5.4. Let us pass to consideration of E,H-waves in the infinite media starting
from known results. For the homogeneous medium € = =1, and application of

arbitrary cylinder or conical coordinates (PBILSBI) is accompanied with

independance K°,K™ from &,1. The equations (2.61)-(2.64) became essentially

simpler, and we have traditional technique of E,H,EH-waves investigation. Note
that a using of common relation h :th(é,n) for all six coordinate systems

classes are corresponded the choice of the relation {=In(/ ro),hC =1 in the conical
coordinates.

Abraham's potentials [64] are appropriated to fields, non-depending on

coordinate C, and to coordinate systems, all Lame's coefficients of which also

don't depend on (. Last condition take place for cylinder coordinates (PBI) and
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coordinates of rotation (PBII) only. Deriving (2.61), (2.62) by Y and substituting
(2.63) in (2.62) and (2.64) in (2.61) we have separate equations for E,H :

4[E:7 /th],v +2{ [(EhC );E - (ShC ); E]/ Suhz }; + u)zushCE =0 (2.75)
4[H:7 /ShC]; +2{ [(th);H - (th)’yﬁ]/suhi }; + (DZMShCH =0. (2.76)
The equations (2.75), (2.76) generalize Abraham's results for fields in the
transverse-inhomogeneous media with € = €(&,Mn),u =wWE,M).

New variants of scalarization problem solutions take place if to use the
formulae (2.56) when are valid the relation

BB™ = hi. = const. (2.77)
Deriving (2.63) and taking into account (2.61),(2.62),(2.77) we have :

4E,)y, +o’a"ohi p’E, + p’[(E, ), /o], +

+ (lnBe)'g(EC)’a + (lnBe);(Ec); =0. (2.78)
Similarly, from (2.64),(2.61),(2.62),(2.77) we have equation for H-:

4(H,)7, + w’a"ohy p H, + p’[(W"H,), /o™ ], +

+ (lan)/é(HC),& + (lan); (HC):1 =0. (2.79)
Additional analysis shows that the equations (2.78),(2.79) are justified not only
with fulfillment of condition (2.77) but and from relations:

BB™ = f(ty;),En = O,Hn =0.

The scalarization procedure variants variety according to shown formulae is
very great. At first, it is caused by possibility of application of any variants from
six PB,SB coordinate systems, i.e. of six infinite collections of variables &,1, (. At
second, beside fields analysis for homogeneous media, one can to research fields in
the inhomogeneous media having the representation (2.54) for parameters which by
using of appropriate PB,SB systems are the following:

PBLe =" (2)B(x, y),u=0"(2)/P(x,y),

PBILe = a*(9)B(p, 2)h . / p,u =" (@)h. / pB(p,2),
SBl.e = Oce(r)hCCB(Q, Q)/r,u=0o" (lf)hCC /1B(6, ),
SBII-SBIV.e = a*(0)B(E, mh [B(0) + o(&, )],
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w=a"(Oh [ +0c(En)1/BE ), (2.80)
where U, 0 - the concrete functions [56].

The equations for transverse components, in contrast to (2.78),(2.79), don't become

in general case the separate ones. For example, for transverse components we have:
MB°E,/p*), + B0 (B, /o), + 2(EB’ s —EB* 1)/ p* T, +

+hi 0K’ E = 2i{a B°[(E), /o T, = [B*(WE ) I, /o), (2.81)
where in right part the longitudinal component is present as known solution of

equation (2.78). But if
B*=B" =h,,0°a" =g, (2.82)

the equations for E,H also will be separate ones. Note that to earlier investigated

circular waves the equations (2.82) are corresponded when o0° =€,,0" = L,.

Let us see the most important cases when all calculating intensities are
faxtorizied functions relatively to longitudinal C and transverse g, N coordinates.
The representation

Ez; = LQ(C)TQ (‘V;,T]),Hg = LQ(C)TQ(&TI) (2.83)

for longitudinal components is allowed by equations (2.78),(2.79). Substitution

(2.83) in (2.61)-(2.64) gives the factorization for transverse components:
E=L{TENM),H=L QT &),

if functions O.°,0t™ are interrelated:
o’ (Q)a™ () = gyu,. (2.84)

With account (2.84) one can to obtain from (2.63),(2.64) a system of algebraic
equations for T,T" finding if functions TQ,TCM are known. Similarly, from
(2.61),(2.62) we have system of algebraic equations for finding of TC,TCM , if

functions T, T™ are known. Hence, there are possible to use two algorithm of field

vectors components finding: longitudinal-transverse sequence and transverse-
longitudinal sequence. According to first of them initially the longitudinal

components must be find as a solution of boundary problem for (2.78),(2.79), and
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then from (2.63),(2.64) we have transverse components. According to second
algorithm it is necessary to find transverse components as solutions of equations
’ 2\7 m ’ my\/ 2 2
4(E;/p7), +a”(E, /a"), + oguh, E=0, (2.85)
’ 2V’ e ’ e\’ 2 2
4(Hy/p )Y + o (HC /o )C +O® SOMOhCCH =0, (2.86)
which are coming from (2.81),(2.82), and to obtain longitudinal components
Eg , HC from (2.61),(2.62). First algorithm action area is more broad because it is
accompanied with conditions (2.77),(2.84) which give more functions [3°,f™ than
conditions (2.82), working for second algorithm. It is necessary to take into

account boundary conditions equations.

2.5.6. We are going to account of boundary conditions: for surface of two

magnetodielectrics separation

ix(E"-E)=0,nx(H" -H ) =0, (2.87)
or for perfect conductor surface

hxE = 0. (2.88)

It is necessary to consider as boundary { = C, which is plane or sphere, so six
infinite collections of surfaces &=C. In problem with perfect conductor the
boundary condition (2.87) for {=C is E. =0, which according to (2.57) is
accompanied with equation HCF =0. Besides, we have from (2.64) H’C =0 and

from (2.61) also (OLBEQ)'C = (0. Each of equations (2.78),(2.79),(2.85),(2.86) will
have own boundary condition.

For conjunction problem from conditions (2.87) and Maxwell's equations we
have also separate boundary continuation equations as the relations:
E'=E ,H = H',M+Hz = M’H’C,8+Ez = SEC For shown problems both
algorithms of fields analysis are equal.

Let us come to great variety of problems with boundaries g = C from PB,SB

coordinate systems. For perfect conductor from (2.88),(2.57)-(2.60) we have:
Hé = O’(Hn)/i = O,En = O,(BeEé)/é = O;EC = O,(HC)/é =0.
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The longitudinal-transverse sequence algorithm of field analysis is more used
in comparison with the transverse-longitudinal one only due to weak application of
complex spatial intensities and generalized analytical variables Y,y functions
technique. The conjunction problem investigation shows that the transverse-
longitudinal sequence algorithm is more convenient than second one because
transverse components are accompanied with independent boundary conditions but
boundary equations for longitudinal components contain else transverse

components.
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CHAPTER 3. REALIZATION AND APPLICATION OF THE
ISOIMPEDANCE MATERIALS

3.1. Metal-air realization of magnetodielectrics

3.1.1. The medium permittivity and permeability may be determined by means
of two methods: a) quasi static, b) wave. According to first of them, one finds a
matter polarization P in the electrical field and a magnetizing M in the magnetic
field, after all we have:

e =1+P/Ee, ,n =1+M/Hp,. (3.1)

According to second method, it is assumed that wave is propagating in the

medium along coordinate C , having for intensities transverse components the

representations:
E =E_(§,n)e' ™ H, =E 7 'e/?° (3.2)

where [3- longitudinal wave number, C,1- transverse coordinates, Z.- wave

impedance of media for this wave. Particularly, in the homogeneous medium a
wave is running along straight-line z. Relations

Z=7Z,=\W, /e, o/f=w/k,=1/\1E,, (3.3)
acting for field in vacuum, may be remained and for field (3.2) in considering
medium so that relations between parameters are given:

Ju/e=2Z_, Jue=B/o. (3.4)

From (3.2)-(3.4) we obtain the calculating formulae:
e.=n/z, W =nz, (3.5)

where refraction coefficient n and ratio impedance chill be known:

n=cp/w,z,=E, /H Z, (3.6)
if to find the field (3.2).

In special cases only, the influence on medium with the help of static fields or
of wave (3.2) may give a coincidence of results, has been obtained with the help of
(3.1) and (3.5).

In accordance with two methods of measurement, there are two techniques of
artificial creation of magnetodielectrics (MD) with € #1,u #1. The First of
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them is based on representation about electrical and magnetic dipoles which may
be realized as discrete conducting elements (small plates, loops) [37-43,61]. The
second method deals with the investigation of waves guiding by metal strips,
waveguides and so on. The quasi static and wave techniques of media realization
we shall consider further separately with regard of the media classification given in
the Table 1.

In rows 5,6 as homogeneous so inhomogeneous media are assumed to be the

isoimpedance ones, i.e. € (X,Y,Z) =L (X, y,Z). The rows 7,8 are correspond to media

where wave may to have constant velocity [5], when € =1 .

Table 1.

Ne Medium €, U, n Z;
I | Decelerating dielectric >1 1 >1 <1
2 | Accelerating dielectric <1 1 <1 >1
3 | Accelerating magnetic 1 <1 <1 <1
4 | Decelerating magnetic 1 >1 >1 >1
5 | Decelerating MD >1 >1 >1 1
6 | Accelerating MD <1 <1 <1 1
7 [ MD with small impedance >1 <1 1 <1
8 | MD with great impedance <1 >1 1 >1

The interest to metal-air MD realization based on the property of the good
conducting metals having the electrical current without delay in total frequency
band from beginning to 10" Hz which contains visible light area also. It takes
place due to unique small mass of electron and its mobility in metal.

3.1.2. Let us consider the quasi static technique of media realizations for cases
given in the Table 1.

1. Decelerating dielectric (€, >1,), =1) realization with the help of small

dimension metal bodies (spheres, rods, disks and so on) are known else from

twenties years. The results of calculations € , when different configuration

elements have been used, are represented in [37,61]. In some cases it is necessary

to take into account the effect of alternating magnetic field action which leads to

reduction of equivalent permeability (U, <1).
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2. The quasi static method may to used for accelerating dielectric realization
(e, <L,u, =1) also. It is necessary to describe this procedure in detail because the
appropriate information in literature is absent. Let there be given electrically short
metal rod with length 1<<A is placed in the electrical field of capacitor
(Fig.3.1,a).

I,/2 I, I,/2 1 14

2C,
[ ]
‘ l Y Y

a) b) c)

Fig. 3.1

The current through capacitor consist of the current I, = jwC,U, non-

depending from presence or absence of rod, and the current I, = jwC,U which is

equal to displacement current in area of rod position ( Fig.3.1,b ). When the rod
was absent we have instead of I, current I, = joC,U where C,<C,.
Therefore, application of rod is equal to the increasing of € . These consideration
else are correspond to above mentioned case of decelerating dielectric.

Let us divide the rod at two parts and inset between them lumped inductance L
( Fig.3.1,c ). Instead of current I, the current I, = joUC,(1-®’/w;) will

flow, where @, =1/,/LC, . The current I, remains capacitive one on frequencies
M < ®, but will be inductance one if inequality W > ®, is provided. Hence for full

current of capacitor by >, we shall have difference ‘IO‘—‘I3‘.Therefore,

accelerating dielectric creation consist of application of great number of small rods
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with additional inductances L which for ®W>®, provide for equivalent
permittivity an implementation of inequality € <1,i.e. n=c_ /v<]1.
3. The accelerating magnetic must to have € = 1, u < 1, that is provided with

help of small short-circuited turns from perfect conducting metal. According to
Faraday’s law, induced emf causes a current which creates magnetic field with
opposite direction relatively to primary magnetic field.

4. The decelerating magnetic (W, >1,€ =1) may be created with the help

small turns, each of them is loaded with lumped capacity C. The resonance
frequency of this loop ®, =1/+/LC is used in condition > ®, when current in

the loop corresponds to above shown case of the accelerating magnetic. If, on the
contrary, to provide ®W<®,, the current in loop will change its direction at

opposite one, and magnetic will become decelerating one.

5. Decelerating magnetodielectric (€, > 1,1 >1) may be created by means of
combination of metal elements which have been described above for decelerating
dielectric and decelerating magnetic realizations (variants 1 and 4). It is necessary

to take into account earlier shown condition 0 < (.

6. Accelerating magnetodielectric (€, <1, <1) is made with application of
elements corresponding to variants 2,3.

7,8. Magnetodielectric with small or great impedance will be realized if to use

the combinations of elements 1,3 or 2,4 appropriately.

3.1.3. Let us come to consideration of wave method of magnetodielectrics

realization.

1. It is known that the decelerating dielectric realization is possible with using
of unlimited length metal strips which have been placed normally to wave moving
direction and to vector E. Besides approximate formulae [37,61] there are known

[62] the rigorous analysis results of the electromagnetic wave diffraction by array

from parallel strips. The assumption [k, = 1 is justify if in accordance with (3.5)

the relation z, =1/n took place.
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2. The accelerating dielectric is formed from metal parallel plates along which a
wave is running as guided H-wave in the waveguide [37,61]. Herein

v=c, [J1-(AA)?, Z8 =7, /\1=(A/L,)?, that gives from
(3.5),(3.6) values W, =1,&. =1—(A/A_)* <1.Besides everything, it is important

to maintain the unimode regime in waveguide.

3. If in above mentioned systems of plates to excite currents corresponding to
E-wave in waveguide, we have accelerating magnetic. Really, for E-wave
equations are: V =C, /\/1 - (X/XCI)Z,ZCE = ZO\/I— (7\./7\.“)2, ie. n =1z, that
in accordance with (3.5),(3.6) gives €, =L, =1—-(A/A_)* <1.

4. For creation of the decelerating magnetic it is necessary to add to the considered
plates system the transverse ridges creating the multi-ridge and multi-waveguide
arrays. With proper conditions implementation, knowing for ridge impedance

surface, the decelerating surface E-wave is satisfied the relations
v=c Y,y <l,z =1/y that according to (3.5),(3.6) yield to values

e =Lu =1/ \|I2 >1. Let us to note that in the book [63] the results of ridge
waveguide analysis were transferred incorrectly on problem of accelerating
dielectric realization. It is interesting that in case of alone impedance plane with

small distance 1 between ridges (I<< A) we have for decelerating coefficient
Wy =cos(2nd / A), where d- height of infinite thin ridge [64].

5,6. The decelerating isoimpedance magnetodielectric (n>1,z_=1) may be

obtained with the help of composition of constructions which have been described

for variants 1,4. Correspondingly, the accelerating isoimpedance magnetodielectric
(n<1,z, =1) may be fabricated with using of the results from items 2,3.

7,8. Formally for creation of the magnetodielectric with small impedance
(z, <1) with constancy of wave velocity (n=1) it is necessary to make the

composition of structures have been described above for variants 1,3. If we want to
make the magnetodielectric with great impedance (z, >1,n =1), it is possible to

use the variants 2.,4.
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3.2. Refraction without reflection

3.2.1. The isoimpedance bodies application allows to have the electromagnetic
wave refraction without scattering. This declaration justification will be given in
present paragraph. We start from traditional methods of reflection waves reduction.
Theoretically the absence of reflection take place if plane wave is incident on plane
boundary normally and if impedances of two media are equal (Z, =Z,). For
decline wave incidence it may be only for determined incident angle-Bruster's one.
It is well known in practice the method of boundary transparent method with the
help of matching one/fourth wavelength layer. The great number of works is
devoted to radioabsorbing coatings application [39,65,66]. Each of shown
techniques has the proper limitations, for example, impossibility of practical
realization of plane infinite boundary. Nowadays, besides "black" body creation
idea, one develops the principles of transparent body fabrication which take
participation in the electromagnetic process without effects of absorption and
reflection. It was known [67,68] that it is possible to do only for selected directions
due to electromagnetic traps from semitransparent screens.

At 1992 the author discovered the possibility to make scatterer as transparent
body with the help of application of energy circular transfer due to circular waves
which had been found earlier [6-8,69].

Let us consider normal incidence of plane wave with intensities

E=7,Ee " =7,E e " H=-y,E,Z,'e ™" (3.7)
on circular isoimpedance cylinder with axis Z, and radius p = a, having inside the
inhomogeneous isoimpedance magnetodielectric with parameters according to

(2.6). The solution of the Maxwell's equations for inner area is equal to sum of H-

waves (relatively to { = @):

E, =E ya/p X (-))"e"™f, (p),

n=—co
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H, = (=)"e™f, ().
wuoﬁ;n Ve

H,=EZ \Ja/p Z(— D e™ My (p). (3.8)
From dependence of n> < N” or n° > N?, where
N° =(a’/a’-1)/4>0,a, =A/4m= 0,084, (3.9)

functions f_(p), ¥, (P) according to formula (2.42) have the representation:

£ (p)=J (k,a)cos(b InP)+b [%Jn (k.a)+
a
rk,al (ka)lsin(b, In2).b =N —n?,
a
v, () =1, (kya)cos(b, In2) — b [(ak,)" (%K -
a
—n%)J (k) + %Jn/ (k,a)]sin(b. InP);
a
1 1
£ =—(J (k[P + (P 1+BI2T (k) +
2 a P 2
rkal (koa)][(g)ﬁ“ = (%)Bn 13,8, =+/n> - N,
1 /’
v, =1, k)P + (- (3.10)
2 a P

1 1 21,2 2 1 ’
=B, [ (a'k; —n)J (kpa)+—J, (koa)][(g)ﬁ“ ~(HP).
ak 2 a P

0

In special case of number transformation, when according to (3.9)
N = N0 is integer number, summonds of series (3.8) will contain the functions:
fro =JIno T Uno/2+ kOaJ;\IO) In(p/a),
, 1 1L, P
Wy =T —[—(@%k; —n*)J, + =T, JIn—. (3.11)
k,a 2 a
There are used ordinary denotations for Bessel's function of first kind in

(3.10),(3.11).
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For boundary 0 = @ we have according to (2.6) € =€,, L =W, that provide
from (3.10),(3.11) f_(p) =T _(k,a), v, (p) =T (k,a),
E,=E, > (-))"e™J, (kja)=Ee " (3.12)

n=-—oco

In accordance with (3.12), where known expansion into Bessel's functions was
used, on boundary we observe a coincidence of expression (3.12) with
representation for primary field. Therefore the integration of formulas (3.8) and
(3.7) takes place in the scattering field absence.

In writing formulae (3.8)-(3.12) the boundary conditions of EZ,H(p

continuation were accounted only to cylinder surface without demand of field finite
values for axis z that is corresponded to situation with elliptic equation degradation

[70]. Namely, the expressions (3.8) were obtained as solution of equation for
azimuth component pH_ = U :

p*U’ + U, +k;a’U=0. (3.13)

The mathematician M.Keldish has shown (see [70]) that for kéa2 >0 it is
necessary to free the degenerating at p — 0 equation (3.13) from boundary
condition on boundary P =0 because solution and its derivation may to have
infinite magnitude on line of degradation.

If to change of places in (3.7) for unit vectors Z,,y, nearby the intensities
E,H, we come to problem with vector H which is parallel to axis z. With using

of the known electrodynamical duality principle it is not difficult to have analogous
expressions for H ,E 0> E(p, according to (3.8),(3.10). From this it follows that the

possibility of cylinder transparent (without scattering field) is shown with arbitrary
polarization of normally incident plane wave. The case of oblique incidence of

wave also is available to analysis if to use the recommendation from [71].

Let us consider the field investigation on cylinder axis. According to (3.8) the

field for p — O has a singularity which is accompanied, with regard of (2.6), also

by singularities of functions describing medium parameters. The situation, when in
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the points of some line or part of plane [44] field intensities stream to infinite, takes
place due to the medium inhomogeneity.

The electromagnetic field with singularity on axis p =0 is observed also for

scattering of plane wave (3.7) by infinite thin but perfect conducting cylinder
P = Pg. Let us, at first, do the transition P — P, in well known (see, for

example, [72]) formulae:

E, =E, > (&™), (k,p)—HO (k o), (ko) /H (ko))

Nn=—oco

H,=(E,),/iZ,.H, =—(E,),/ joup, (3.14)
i.e. we dispose the observation point on cylinder surface. From (3.14)-(3.16) we
obtain:
H, =2E(Z,nkp,)" D (=)' /H (k).
E, (p,) =0,H,(p,) =0, (3.15)
where took into account the relationship:
VYH® -H?T =2j/nkp,. (3.16)
Now in (3.15) we use for small & = k0, <<1 the representations:
2 2 & (n-D)D"

@E =1+j~In— H?E) =——+ :
H © JTE 1,78 " © n2" ) ne'
HY(€) = H,” (§)exp(~jnm) (3.17)
and we have according (3.15)-(3.17) current density
J,=H,=E;/joup,, (3.18)

hence, the current is I=27E/ jou, #oo. If in the problem about infinite thin

wire according to (3.18) intensity H 0 has a singularity as 1/p, for inhomogeneous
isoimpedance cylinder nearby axis p=0 we have H =y(p)/ \/5 , and
limw(p) #e for n° < N* and limv(p) == for n’ > N;. Given result

p—0 p—0

depend of electrical size k,a and of possibility (or impossibility) to remain the

components with n” < N? in series (3.8).
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The question about the field behavior nearby cylinder axis is close to
considerations about energy losses increasing with the increasing of intensities
when P — 0. As it is noted in [44], for real inhomogeneous media due to losses

presence the field intensity has a finite value instead of theoretical infinity.

3.2.2. It’s possible to give the view for series (3.8) which is convenient for

analysis if to consider a field nearby surface in the inner nearsurface layer of

cylinder body. Assuming In(p/a) as small value, we have according to (3.10):
f =J (ksa)+[J, (k,a)/2+k,al (k,a)]ln(p/a), (3.19)

k2

2 —
v =V (ak,)-[2 o~ L (koa)+%J;(k0a)]lnB. (3.20)
a

Oa
Besides relation (3.12) there are justified also the equations:

Z(—j)nejn(PJ; (koa) — _jCOS(pC_jkOaCOS(p,

> (=)' e (k,a) =k, asin e 0. (3.21)
With regard of (3.19)-(3.21) we have for electrical and magnetic fields intensities:
E=E,/a/pe " *?(1 - jk,acos@ln B) ; (3.22)
a
Esin E cos
H =——0® = 2080
Z, Z,

E \/7 —Jkoacos(p(kOaCOSZ(p_ 1
Y700 4k,a

where the condition of small value In(p/a) was used. In so doing, the

)Inp/a, (3.23)

Cartesian components of magnetic field intensity vector are equal:

. E E \/7 —jak, cos
Hy=HpSIH(p+H(pCOS(p————— ! ?x

Z, ~JpZ,

xcos@ln(p/a)k,a cos’ @ — 1/k,a), (3.24)

. JEO NV a 2
H =H cos¢o—H_ sinp= (k,acos” @—
" ’ Zlp
—1/k a)e ™ **®*sin @In(p/a). (3.25)

44



With the help of (3.22)-(3.25), we find the Cartesian components of Pointing's

vector average magnitudes:

I, =—(EH, +EH,)/2,I1 =(EH, +EH,)/2, (3.26)

where indexes 1,1 are corresponded to real and imaginary parts.

After substitution of (3.22), (3.24), (3.25) in (3.26) and simple transformations, we
have the characteristics of longitudinal and transverse energy flows relatively to the

plane wave incidence direction:
21.2,.3

1

M. =—-—""9" cos*@In*=(cos* @ — +

. A 0 a( 0 (2) )

2

+ Ega (1+ka® coschln2B , (3.27)

27,0 a

E’k’a’

M, =—="" gin2¢In* = (cos* @ — . (3.28)

Y 0 ¢ a( ® 4k(2)a2)

In accordance with formulae (3.27), the input (output) through boundary p =a

energy flow 1is corresponded to Pointing's vector in incident plane wave

IT .. = E(z) /2Z,. Essentially that continiousity on boundary takes place as for

X

IT,, so for H; =II, =0. It means that Pointing's vector lines inside cylinder

start to be curvilinear only with coming away boundary that is caused by increasing
of function II (p,) values with comparison of function I (p,¢) ones. For

electrically great cylinder in nearsurface layer we have

1 ~-Efkga’(Z,0) "' In*(p/a)sin2¢cos” @, (3.29)
2 21,23
1, = Eea (1+k;a’cos’ In® Py_ Bl oo¢t P (3.30)
220 a pZ, a

Relations (3.29), (3.30) are in action for all (p with excluding of tangential points
¢=m/2,0=3m/2. It is interesting that not only function (3.29) but and

function (3.30) may have the negative values. In last case in proper points it is

possible to have a motion of energy opposite to X,,.
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3.2.3. The practical interest exists to the problem of isoimpedance cylinder

excitement with current filament. Let a primary field is created with uniphase
electrical current | filament coming through points ¢ = @,,P =b. It is known that

E=7,(—opd/4) Y e ™™ (k 0H? (k,b). (331)

The relationship (3.31) generalizes the representations (3.7),(3.12) for plane
wave, transforming in latters with account of Hankel's function asymptotic
H? (k,b) = /2/k bexplj(—k b +nm/2 +1/4)], (3.32)
which take place if k,b >>1. Therefore, it is sufficient to withdraw a filament on
electrically great distance from axis z in order to use for primary field for all
P < b the formulae (3.7),(3.12), where
E,=- Iou, o ikobrin/4

2,/27k b

Therefore, during asymptotic (3.32) action the isoimpedance cylinder is also
non-reflecting body for field of electrical current filament. Essentially that
condition 27tb/A >>1 is related only to distance between filament and cylinder
axis but not between filament and cylinder surface.

3.2.4. Let us transfer obtained result about refraction without reflection also on
acoustic problems. At first, we consider acoustic non-reflecting cylinder. Sound
field equations in the inhomogeneous liquid or gas medium with assuming of small
longitudinal vibrations are [46]:

p, +m,c’divv =0,V, + m_'gradp =0,

where p- sound pressure, V - sound wave velocity, m, - medium density, ¢ -

v

sound velocity: ¢=1/,/m K, and K is ratio compression ( k' - medium ratio

elasticity ). Transition to complex amplitudes of harmonic fields gives:
jop, + K 'divw_ =0, jov,_ +m]'gradp_=0. (3.33)

Similarly with (2.6) we use for the inhomogeneous cylinder parameters also

inverse proportional dependencies from radius P

K=K,a/p,m,=mya/p, (3.34)
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where K,,m, - constants corresponding to cylinder body. Substituting (3.34) in

(3.33), we obtain for sound pressure the equation

2
0 (Y apm)-l- 9Py +p 9Py, +a’k}p, =0. (3.35)
dp = dp 00’ Jp

The equation (3.35) has the same view that the equation for E_  in

z

P

electrodynamical problem, therefore according to (3.8),(3.11) we have:

P, =P alp Y (= e . (3.36)

n=-—oco

The incident plane wave with pressure p,_ =p,, €Xp(—jk,Xx) and inner field

(3.36) are satisfied bothly on boundary p =a the continuos conditions as for

pressure so for the normal component of velocity in sound wave Vv, . These

conditions are typical for boundary of two media separation. Therefore, non-
absorbing and non-reflecting cylinder realization consist of medium realization

with parameters (3.34).

Let us pass to problem about non-reflecting sphere. One see an incidence of

plane acoustic wave p, =P, €Xp(—jKk,z) on sphere with radius r=a and ratio

compression and density are according to the relations:
K=K,a’/r’,m,=m’/r’, (3.37)
In spherical coordinates 1,0,( the equations system (3.33) (for case of

independence from (0 ) are represented by equations

jop, + l[i2 (r’v_) + (sinBv_,);1=0
Kr

rsin
. -/ A s -1~ _
jov_+m_ p_=0,jov_,+m 1 p_ ,=0.

After substitution of (3.37) we have the second order equation:

(r*p’ ). +r’(sinOp’ ), /sinO+a'k;p, =0. (3.38)
The equation (3.38) solution is

pm=r'3’2i(—j)“(2n+1)P BJ, (koa) Cl. (koa (3.39)

where P (cos0) - the Legendre's function, 'Jiv - the Bessel's function,
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v=4/n"+9/4. In sphere origin both Bessel's functions have finite magnitude

(J,,(2) =0). Using the primary plane wave expansion
Py = 2 (=))"(2n + P, (cosd)g, (K1), (3.40)
n=0

where g_(k,r) =/m/2kJ ., ,,(k1),

we put on (3.39),(3.40) two boundary conditions for r=a:

Pu = Pous(P); = (P1):- (3.41)
It was taken into account in (3.41) that due to (3.37) on boundary m =m,.

Sphere origin, similarly to cylinder axis, must be free from boundary condition

putting. Really, according (3.39) for r — 0 a field has singularity of type 1/r
because J_, (k0a2 /1)~ Jro.

The coefficients B_,C_ will be found from relations (3.39)-(3.41). Hence,

during the plane acoustic wave (3.90) incidence on the inhomogeneous
isoimpedance sphere with parameters (3.37) the reflecting wave is absent, and

inner field of sphere is specified by formula (3.29).

3.2.5. It is necessary to account that energy loss presence only impairs the non-
scattering body properties. In book [73] the authors suggest to determine a "black"
body with condition of power loss maximum that may be observed only with
scattering field presence. Therefore, above considered isoimpedance bodies are
correctly a non-scattering ones only if power loss is absent. But in case of small
value of loss angle tangent the obtained solution are in action as an approximation.

Formally, the Maxwell's equations don't change their view if to use instead of
€o the complex constant €,(1—jtgd). Increasing of the function
e=¢—je"=¢,(1-jtgd)a/p with a coming to axis p=0 causes field
amplitude reduction due to €”. At boundary p=a we have €= €, 1f to use an

assumption tg8 << 1. Therefore, relations (3.8)-(3.11) take place and for non-
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reflecting magnetodielectric with change in argument of Bessel's function k,a on
k,a(l - %th).

Loss power absorbing by cylinder is equal to loss power, which was taken from

~jkox L —koxtgd/2 . : : .
decrement wave E e™""*"e”°"*"" or appropriate cylinder area in the isoimpedance

body absence. Really, the placement in decrement primary wave is accompanied

with exact coincidence of media parameters on both sides from cylinder boundary.

3.3. Isoimpedance materials in antenna engineering

3.3.1. The considered unique property in the previous paragraph of the
isoimpedance cylinder to make refraction without reflection is very useful for
different antenna-feeder installations creation. For example, one may do a
transparent coating for supports placed in the reflector antenna aperture. New
possibilities will be open for lens antenna creation. The expansion of relations (2.5)
to the formulae
€ =gX(X,Y,2), b = UX(X,Y,2), (3.42)
where Y(X,Yy,Z)- arbitrary continuos coordinates function, does not violate the
condition (2.4). Therefore, in general case the isoimpedance inhomogeneous

medium is characterized with formulae (3.42). Relation (2.18) specifies the circular
wave velocity but expression 1/./€L =/ doesn’t have of this physical

meaning in general case. Nevertheless, for % >1 one may to consider the medium

as inhomogeneous decelerating one.

If on surface or on its part which divide the homogeneous medium with

€, =W, =1 and the inhomogeneous one with € = =7, we have boundary

condition Y = 1 implement, it is continuos not only impedance but also phase

velocity on boundary. In some cases there are sufficient conditions for providing of

non-reflecting coming of T-wave in the isoimpedance inhomogeneous medium.
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3.3.2. Let us consider relations for current and charge of wire which is
immersed in the inhomogeneous medium. For curvilinear wire, disposed in
homogeneous medium, the differential equations

~I(8) = Jot(§). T, (&) = —je (&) + £ (€) (3.43)

have been analyzed [7,74], where

27 2n
I= ajH(p(?;, 0)do,T = ag, jEp(i, @)do,
0 0

27
£(&) = ag, [ (B,),do = 2ame, (E,, ). (3.44)
0

Disposition of wire in the inhomogeneous medium is accompanied by
preservation in (3.44) the formula for current, but it is need to modify the linear

charge definition:

27
t=a[€E do = 2mae(§)E,, (§). (3.45)
0

According to (3.45) we suppose that in points of wire section contour due to
small value of radius a one may to consider the permittivity of environment
medium is constant and is equal to function € = €(p =0,&) in points of wire axis
line. Together with (3.45) it is generalized the formula for nearsurface field
characteristic:

f(§) = 2ane(€)(E,,) . (3.46)
The generalized equations for I,T derivation is similar to relations (3.43)

fabrication [7,74]. The Maxwell's equations intengrated along the wire contour

(E,=0,H,=H =0,E=12z) give:

oE
s _ ek, S - Lo o,
0z 0z op
10 .
——(PH,_) =joeE__. (3.47)
pJp

Hereto, the view of first from the equations (3.43) is unchanged but second

equation will be more complicate:
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(&)~ (Ine),7(E) = ~joe@WEIE) + £ (). (3.48)

The substitution of first relation from (3.43) in (3.48) leads to ordinary

differential equation

I7 = (). I + kox* (©)I = —jof (§), (3.49)
which is wrote for further to be analyzed the isoimpedance medium variant,
characterizing with relations (3.42).

The equation

I7 + kI = —jof (&) (3.50)

has operated [7,74] in the homogeneous medium instead of (3.49). It is interesting
to note that the homogeneous variants of equations (3.49),(3.50) have analogical
solutions. Namely, if free part of wire current, when medium is homogeneous one,
according to (3.50) is

I,(E)=Ce ™ +C,e™*, (3.51)

in a problem with the inhomogeneous medium analogical solution has a view

I,(E) =Ce ™" +C,e™*, where((§) = jxd& (3.52)

3.3.3. Let us research the two-wire line electromagnetic field when the line is
placed in partly inhomogeneous medium. Wires of the line are going normally to
plane z=0, and half space z<0 is occupied with an air and half space z>o is filled
with the inhomogeneous isoimpedance material. In each of media a field has T-
wave structure that allow to consider due to f(z)=0 the functions (3.51),(3.52) as

full currents in wires. Coming from half space 2z<0 current wave
I, = C,exp(—jk,z) transforms in current wave I, =C, exp(—jk,£) for z>0,

z
where C = J.X(XO, Yo,Z)Mz, and X,,y, - are wire cross section center coordinates.
0

Because for any view of function 7%(X,y,Z) on boundary z=0 we have also
{ =0, one observes the current continuity for z=0. For charge continuity it is

necessary to put X(X,y,0)=1, that with account of (3.42) causes boundary

parameters continuity. Coming over without reflection in half space z>0
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electromagnetic T-wave safe a structure of two-line field but has a decelerating in
accordance with formula for phase velocity v =c,/) <c, when > 1.

Let us consider a problem about field of two-wire line laying on plane
boundary between homogeneous and inhomogeneous impedance media. Now each
of wires has partial boundaries as with air so with magnetodielectric. As it is shown
for strip lines in [57] it is expedient to diverse two currents: current with an air
surround I* and current with magnetodielectrical surround ["™. These currents are

described with help of formula (3.44) but with integration only on appropriate parts

of circle 0 = . In each of half spaces now only quasi T-wave is coming, and only
longitudinal component of electrical field intensity is present. Due to (&) # O the
currents 1*,I™ consist of summons (3.51),(3.52) and ones depending on right
parts of inhomogeneous equations (3.50),(3.49), because additional energy motion
takes place in planes z=C. Hence, the inhomogeneity of space where two-wire line
is disposed causes an appearance of transverse radiation energy.

3.3.4. Let us now consider a spiral antenna disposition, at least partly, in
magnetodielectric cylinder with parameters according (2.6). One folds two-wire
feeder so that its wires create the hyperbolic parallel spirals

p=a/@,z=th(0< @< ). (3.53)
All points of spiral wire, corresponding to z=h, ¢ >1, are inside the cylinder.

Length of spiral plane curve is found [75] according formula
E=a[—\1+¢" /Q+In(@+1+¢7)]? . (3.54)

where for wire part in air 0<@, <@<1 and for wire part inside cylinder
I=@,<@<oo. At first part the equation (3.50) is valid and at second part-
equation (3.49). For coefficients (In 8)'é =(In X)'é and ¢*(E)=a’/p*(€) finding
it 1s necessary from (3.53),(3.54) to have the dependence p(&) . It is need to have
representation of inverse function @(E) that is difficult to obtain due to

transcendental character of function (). But on the turn 2mm< @ < 2(m+1)7,

very close to a circle, one may to give the approximate linear relation:
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2ma a
§=8 s o
2m+1 (2m+1)m

£ =~2a—.Ja’+p’ +aln[(a+~a>+p>)/p.(1+~2)]. (3.55)

It is simply to find with help of (3.55) the functions

g
X(E) =(E-C)/C,.LE) = [xde=C;' € 12-CE)l;
&

=C,+C,0,

which are in formulae (3.49),(3.52).

Due to the isoimpedance cylinder the plane T-wave of straight-line feeder is
converted in circular T-wave of folded feeder. The similar effect is not observed if
the feeder is fold in an air.

Because of the folded feeder is placed in the inhomogeneous medium, there are
present the longitudinal components of electrical and magnetic fields l'ﬂ(p,H(p
relatively to wires currents. Their addition to circular T-wave intensities makes

inside cylinder a field in view of conditionally quasi T-wave which is convoyed
with normal energy flows (due to E H,,H E,) and axis energy flows (due to

E H_ ,H_E ). Two opposite directing along axis z flows create the great mutual
compensation. But for radially convergenting energy the nearaxis area P — 0

performs a role of perfect screen, and the radial coming away energy flow of
radiation must to increase. The additional contribution in transformation of circular
T-wave in quasi T-wave is given by effect of infinite medium change on its part as

the isoimpedance body.

Therefore, in suggested spiral antenna we have a smooth transformation of
feeder T-wave in cylindrical radially divergenting wave with intermediate "agent" -
circular quasi T-wave. During practical realization of antenna with circular wave it
is necessary to produce MD cylinder with finite height. Particularly, spiral wires

may be placed on the cylinder's tops.

It is interesting to consider a slot spiral antenna with circular wave. The

antenna may be made in view of the narrow spiral slot in metal disc of radius a, and
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disc is placed between two MD half cylinders. The circular quasi T- wave has
Ep,HZ and radiates due to I = EpH(p and Hp = E(pHZ.

3.3.5. Let us pass to consideration of screw antenna construction with circular
wave. Two-wire feeder is connected to two screw wires which have axis lines with
equations

X =p,cosQ,y =p,sin@,z=he/2m;

X=p,Cc08Q,y =p,sin@®,z=he/2m,
where h- step of winding. Screw line of small radius P, is placed completely inside
MD cylinder. The screw line of great radius P, >, may be placed as inside
cylinder so on its surface. For longitudinal coordinates &1,?,2 along each of wires
we have

&2 = N pi,+h*/4m’. (3.56)

The motion along screw line is accompanied according to (2.6) with

independence €, from z that allows to put nearby inner ( outer ) wire
X, =alp,(x, =al/p,). The equation (3.50) becomes simpler:
I G1o) + kil = —joof 5 (&) (3.57)

ThC horno eneous equations (35 7) have tlle solutions:
g
—jk ik
182 Ci,Ze iKoXi1,281,2 Clz,ZeJ oX1,2812 .

Due to (3.56) the phases of running waves of two wires currents are not coincide in
general case. But for small step h <<2mp,, it is absent that corresponds to

circular quasi T-wave between two screw windings

(‘Ep‘>> E,|,H,|>> ‘HpEi ~0,H; =0).

b

z

Curvilinearity of wires and the inhomogeneity of magnetodielectric cause for
(3.57) f,, #0, i.e. existence of currents creating a radiation into direction 0 and z

due to E 07 0,H 07 0. Flows of power, characterizing with values E H o E (pH o
are not great that it is impossible to say about I1 =E H,,Il, =E H_. The

control of relation ‘Hp‘/ ‘HZ allows to create a radiation previously in radial or

axis directions.
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3.3.6. Let us now consider on the radiation patterns calculation for the shown
antennas. The presence of the isoimpedance inhomogeneous body in antenna
construction makes the radiation field calculation more complex. If the electrical

(magnetic) current je’m is placed in the homogeneous medium, in far zone of

radiation field the intensities components are equal to
E, =-2n(Z,A; + AI;)/?»,H(p =E,/Z,,H,=-E_ /Z,,
E, = —j27’E(ZOAfp -Ay)/ME =0,H =0, (3.58)
Ag=A, cosOcosp+ A cosOsing— A, sinb,
A,=—-A sin@p+A coso,
eIk

Ai’m — J.je,m ejk(x/sin6c:0s(p+y/sinGSin(p+Z’COSG)dX’dy’dZ’‘ (359)
P Aqe T

As is well known that the filling of volume v with the inhomogeneous MD may be
taken into account by means of adding to formula (3.59) the equivalent currents
J* = (e =gy joE, " = =(u —p ) joH, (3.60)
where E,H - field intensities in volume v. Really, the Maxwell's equations easily
may be transformed:
rotH = joe E + jo(e —¢,)E = joe E + j°,
rotE = _].(DMOﬁ — Jo(u -, )H = _J.(DMOﬁ + jm :

Hence, for wire antenna radiation field finding the formulae (3.58)-(3.60) are

h 27 a
used, where volume integral j...dV = fh dZI0 d(pj0 ...pdp is used, and also it is

necessary to use a linear integral for current satisfying to equation (3.49). Hereto, it
is justify the traditional assumption about possibility of non-full wire current
application but only its harmonic part according to (3.52). Similarly instead of full

field in (3.60) one may to account only known part in view of circular wave.
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3.4. Radio circuits components miniaturization

3.4.1. The problem of radio circuits wave-elements miniaturization attracts the
attention of the specialists for many years. The classification of elements with the
linear dimension 1 as lumped one (1<<A) or distributed one (1 ~ A ) has some
non-rigorousity. For example, thin coaxial cable part with | ~ A may be fold into
a spiral with diameter d << A, "disturbing" a principle of elements dividing on
lumped and distributed ones. In contrast to UHF circuits the MF, HF circuits
elements don't usually contain the long lines due to great sizes. Meanwhile, the
functional abilities of the wave elements with multi-conductor lines [76,77] are
very various because it is may be realized the impedances transformers, the broad-
band matching devices, couplers, filters, multiplexers, symmetrical installations
and so on.

The electromagnetic field inside wave multi-ports devices are described with
quasi T-waves composition. The ideal T-wave, being non-varying electromagnetic
structure in the infinite frequency band, provides in real conditions the broad band
characteristic representation of wave multiports circuits.

The multi-cylinder coaxial construction of the line [76] is not convenient for
production, it is hard to make a ring from one. During folding of non-screening
multiconductor line the electromagnetic field is not a quasi T-waves variety
because the essential azimutial (longitudinal) components of field vectors E(p,Hcp
appear that create the radiation energy losses. Due to shown cases one can't to do
the multiconductor lines miniaturization for MF, HF, VHF excluding partial
miniaturization for spiral elements of filters. At present time this consideration may
be revised because one may to add to known miniaturization techniques [76-79] the
principally new possibilities if to use the circular T-waves.

3.4.2. The generalizing the problem, has been considered in p.3.3.3., we

dispose the multiconductor line in the isoimpedance medium. Let a half space z>0

is filled with the inhomogeneous medium with € =W _=7%(z) having the same

56



impedance which is for homogeneous half space ( z<0 ) with Z, = /U, /€, . If m

wires are placed normally to planes z=C a field in the inhomogeneous medium is
two T-waves with summary intensity

E, =E'(x,y)(Ce ™ +C,e""), (3.61)

where (= J: %(z)dz. For wires currents and their linear charges the
representations I, (z) = C’Ve_jk"C + C’V'ejk"c,v =12,..m,

T,(z) = X(Z)\/%(Clve_jk"g - C’V'ejk"g) are justified. The phase velocity of T-

wave, running along axis z, is equal to v=c,/¥(z).

For example, if medium characteristic is

Y(z) =1+ te(mz/2)), (3.63)

we have v — 0 for distance z=l, i.e. the total decelerating of T-wave. Hence,

according to (3.61), (3.62), the plane T-wave in the inhomogeneous medium is one

with varying velocity depending from characteristic )((z). Standard determination
of wavelength A(z) =v/f =A,/y(z) shows that for (>1 the shorting of

wavelength takes place when A is smaller than A, as wavelength in free space.

Hence, the application of multiconductor line, immersed in the inhomogeneous
magnetodielectric, allows to produce an equivalent homogeneous line with middle

wavelength
I
A =l [ d2/7(2). (3.64)
For example, substitution (3.63) in (3.64) gives A_ = A, /2, but it is possible to

do and more shorting.

3.4.3. Let us now consider the peculiarities of wave elements calculation if the
T-wave approximation is used. The UHF wave elements, containing wires
segments, are couplers, filters, impedance transformers and so on [76-80]. The
problem of adequacy of description of the electromagnetic fields of these devices
with the help of the telegraphy equations, i.e. in approximation of T-waves, has not
[78] of quantity estimations. The schemetechnique specialists are forced to be

satisfied with necessity of experimental testing of theoretical results. The
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electrodynamical analysis of such constructions is very complex as on stage of
boundary problem recognition so and during solution reception. We now consider
the electrodynamical justification of schemetechnical models of multiconductor
wave elements with utilization of non-homogeneous differential equations for

currents and charges of wires [7,74].

In exact meaning the plane T-wave may be observed only in line with infinite
length and parallel placement of wires. The real curvilinearity and finite sizes of
wires lead to necessity of estimation of the difference between real quasi T-wave
and ideal T-wave. A quasi T-wave modeling may be made relatively simply if to
take as basic the differential equations for current and linear charge (3.43). The
convenient view of results is obey to refusal from field intensities analysis. For
output parameters multiports matrix it is sufficient to analyze only corrections to

wires currents

I(E) = Ce ™ +Ce™*, (3.65)

corresponding to ideal T-waves. Current of each wire has, besides expression

(3.65), also non-homogeneous equation (3.50) solution as integral
T I RPN NI
L) =—jok™ [ (E)sink(§~&)dE. (3.66)

The charge linear density is finding with the help of substitution of (3.65), (3.66) in

the first of equations (3.43), whence we have for each wire

(&) =k(Cie ™ ~Ce™)/ 0+ [ £ (&) cosk(E ~E)dE. (3.67)

As example, for four terminal networks (two port) we shall show the matrix [a]
procedure, taking into account the difference between two-ports field and T-wave
with the help of the additional summons of current (3.66). Two wires with arbitrary
axis geometry are subjected to condition of voltages determinations in regular
areas: the beginning of wires form an input pair of terminals and the ends- output

pair of terminals. As for input so for output the conditions are fulfilled for charges:

T, =—T,,T, =—T, and for currents I, =—1,,I, =—I,. Wire 12 has a length 1
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and wire 1’2’ - length 1”. Formulae (3.65)-(3.67), considering for wire beginning 12
(§=0) and for end (§ =1 ), give the equations (0 =kl ):

I, =1,cos0 — je,T,sin 0 jc, [ £ (&)sink(l-&)dE’, (3.68)
T, =—jlc;'sin 0+, cos 0+ [ £(&)cosk(1— &)dE’. (3.69)

Input and output of two-port circuit are created by regular feeder segments,
hence their capacities per length unitC, are the proportional coefficients between
charges and voltages. Participating in (3.68),(3.69) near-surface field characteristic
is equal to zero only in approximation of T-wave. In considering general case for it

the linear relation
f,() =1,F(&) + LE () (3.70)

is justified where functions E ,F, according to(3.70) correspond to fields in open

circuit and short circuit tests for two-port output:

F=f,/t, forl,=0, FE=f,/I, fort,=0. (3.71)

The substitution of (3.70) in (3.68),(3.69) leads after simple transformation to

matrix [a] of equation system
{Ul} _ {au 3'12:||:U2:|
Il a21 a'22 I2 ’
namely:
a, =cos0+B_cosO+ jc,'A_sin0,
a, = jZ,sin0+ (jc,'A,sin0 + B, cos0)/C.,

a,, =jZ,sin0+C,(jc,B,sin0+ A_cos0),
a,, =cos0+ A, cos0+ jc,B,sin0, where (3.72)

A, = jco| B (B)sink(-E)dE,B,, =—[ E,, cosk(1 - £)d&. (3.73)

In idealized variant of parallel placement of wires 12 and 1'2"and with

neglecting of end fields we have F. =0, F, =0 and the known formulae
a), =a), =cos0,a), = jZ_sin0,a5, = jZ.'sin0. (3.74)
Two-port inversion condition demands after substitution in it of formula (3.72)

for numbers A_.,B ol of fulfillment of relation

T,1°
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A +B.+BA -BA_=0. (3.75)

Therefore, functions F, arbitration is limited by equation (3.75) implement
demand. We may introduce the models [74] of small deflection of the electrical
field force line nearby wire. It will give a possibility to estimate according to (3.71)-
(3.73) a contribution of quasi T-wave in comparison with field of ideal T-wave by

means of comparison of parameters (3.72) with values (3.74).

3.5. Circular waves action on electron and plasma beams

3.5.1. The electron or plasma beams perform an active role in varies devices of
modern engineering: particles accelerators, electron-optical devices, electron
devices for amplifying and generating of vibrators, electron microscopes, plasma
guns and so on. The beams parameters control is usually making with the help of
the electromagnetic fields of proper structure 81]. Evidently, that for these purposes
We may use the electrical and magnetic fields of the circular waves in the
inhomogeneous isoimpedance media. In creating of the appropriate devices, it is
useful to account the proper peculiarities of suggested fields structures.

In the electromagnetic wave a charged particle is forced as from electrical so
from magnetic fields. Therefore it is possible to have differential combinations of
action and control of electron beams.

For T-wave and, mainly for E,H-waves, ones may to observe force lines
structure maintenance at frequency band. This property of guided waves represents
an interest for problem solution of stable electron and plasma beams.

The circular waves have the additional peculiarities else. The circular character
of energy motion with repentance and superposition of plane (sphere) fronts one on
other potentially promotes to creation of the high intensity fields. The wave
performs in role of electromagnetic screw-view coating for electron or plasma

beams. For creation of effective exchange of energy between beam and wave it is
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important that using isoimpedance material provides wave decelerating with doing
of any desirable velocity value. The screw-view character of electromagnetic
energy motion creates conditions for increasing of time of interaction between wave
and particles beams. At last, isoimpedance media and circular waves have
additional possibilities of unusual beam and field interaction due to authophasing
condition in view of relationships (2.29),(2.45).

Let us discuss how the circular waves may be used in plasma electromagnetic
holding installations. Despite on the great number of theoretical and experimental
works [82] at magnetic holding of high temperature plasma, this problem hasn't
desirable solution at present time. Besides others, one principal contradiction
opposes to the solution. Usually for plasma thermoisolation one tries to use a
magnetic field with non-varying structure of force lines in the time and space. But
an appearance of plasma non-stability almost is accompanied with alternating
electromagnetic fields that isn't coordinated with external static fields.

It is interesting to consider the next argument: for holding of such dynamic
object as plasma it is necessary to use electrodynamical methods which allows to
have electromagnetic waves with stable structure of Poiting's energy vector lines.
Otherwise speaking, initially a problem of holding must be recognized in
electrodynamics frameworks but with solution searching in classes of waves with
stable force lines of the electrical and magnetic fields.

As 1s well known, that in the homogeneous media such waves are plane and
sphere T-waves only, having parallel or divergent unlimited straight-lines as energy
lines. Therefore, to hold a plasma in finite volume with the help of plane (sphere)
T-waves only is impossible. It is suggested to use for thermoisolation the circular
T-waves in the isoimpedance inhomogeneous media. From four possible classes the
most interest is application of the coordinates of PBII class (plane-axis) and SBIII
class (sphere-axis).

During T-wave application problem consideration we use for plasma the usual

assumptions [82]: a) about high electroconductibility which take place for great
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temperature, b) about possibility of observation of forces on plasma surface only as
for gas-view perfect conducting body.

One traditional idea consist of doing of plasma beam selfsqeezing due to the
longitudinal surface currents, i.e. to circular lines of magnetic field intensities.
Second traditional idea is the following: in order to stabilize the plasma beam form
it is necessary to use longitudinal lines of magnetic field, i.e. current circular lines.
Generally, it is need to create on plasma beam surface the screw lines of current.

We may make the circular T-wave to participate in plasma beam holding if it
will be one of two conductors forming the channel waveguide.

This is the simplest construction of hot plasma holding installation shown on
Fig.3.2. The vessel 1 with gas is located inside the isoimpedance inhomogeneous
magnetodielectric 2 having ratio permittivity and permeability variation along

radius in accordance with law (2.6).

X XXX X
o000/ 0|0

Y
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Along wire of winding 3 the current wave runs with velocity ¢, because for

Pp=b we have € =W, =1. After conversion of gas in plasma a conductor 1

performs in role of inner winding with screw current, and in nearsurface layer for

@ = a one observe the decelerating motion of electromagnetic energy with

velocity v=c,/€ =c,a/b. The simplest circular T-wave has circular (along @)

energy flows with fields intensities according (2.24):

E=E, = %e‘j“o‘” =ZH=-ZH,, (3.76)
where U is electrical voltage for running wave. Two quasi T-waves (direct and
reflect) will be observed in construction shown on Fig.3.2. with intensities closed
to relations (3.76). Evidently that for great intensity H production it is necessary in
accordance with (3.76) to do a difference b-a small value. But, if to recognize a
problem of near plasma wave velocity decreasing, it is necessary to choose

appropriately the ratio a/b.

Let us now consider also thoroidal construction with circular T-wave. For
mathematical description the coordinates (2.34) from class SBIII are used. For
existence of T-wave with intensities (2.35) the isoimpedance medium must have
ratio parameters according to (2.8). The expressions (2.8),(2.35) are more complex
than (2.6),(3.76) that is accompanied a transition from straight-line beam (Fig.3.2)
to circular plasma beam with radius p =a. The magnetic field intensity Hn is

tangential to beam surface and is a stabilizing cause for it. Second guiding
conductor is a winding which is placed on the thoroidal isoimpedance
magnetodielectric surface.

3.6. About utmost parameters realization

3.6.1. The interest to the dielectric and ferromagnetic with utmost magnitudes
of parameters € —> oo,ll — oo exists during all period of the electrodynamics
development. The natural dielectric material with € — oo is absent. If it will
create this material artificially, that its behavior on boundary will be equivalent to
perfect conductor presence. Hence, formally in the electromagnetic installations we
may use instead of conductors the utmost dielectrics if only frequency ® > 0. The
various applications will be find and for utmost ferromagnetic with W — oo . Let us
consider the principal possibilities of artificial realization of the utmost dielectric
and ferromagnetic with metal-air production methods application (p.3.1). It is
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known [12,38] that ratio permittivity of dielectric, has been made from metal
particles, may be found according to formula

e, =1+2v)/(1-v), (3.77)

where v is ratio volume occupied by a metal. That less place is taken in material for
an air than due to v —> 1 a permittivity €_is close to infinity. The similar result may be

obtained with the help of the device shown at Fig.3.1,a, if the space between capacitor's
plates will be filled with metal rods, sizes of which must be more and more smaller.
The ferromagnetic material creation is produced according p.3.1.2. with the help of

small turns L loaded by capacities C. For frequencies ® < ®, =1/ \/E the additional
impedance, which have been brought from the turn to primary winding L, has the
inductance character so that equivalent inductance of the winding is equal to
L., =L, [(1)(2) +o’(k’ - 1)]/((1)(2) —®*), where k is coupling coefficient. The presence
of great number of the turns demands of the relation obtaining of the view likes (3.77)
but the principal possibility of the approach L — oo already is evident. For that is it
necessary to diminish sizes of turns with simultaneous increasing of their number.

3.6.2. The variants of utmost dielectric and ferromagnetic application are useful
to consider with regard of formal analogy- Maxwell's equations duality principle
for fields creating by dielectric and ferromagnetic filaments. The electromagnetic
field of two-filament dielectric transmission line for ® >0 has the same electric
and magnetic force lines that the field of usual line from two metal wires.
According to formal analogy between two Maxwell's equations two-filament
ferromagnetic transmission line has the electrical force lines embracing filaments
and the magnetic force lines coming from one filament to another one.

If it will be created utmost ferromagnetic filament, it will give a possibility to
realize the capacity transformer [83,84]. For that it is need to embrace two closely
placed capacitors with a winding from the ferromagnetic filament with W — o=. To
one capacitor the alternating electrical voltage source is connected, second
capacitor is loaded. The electrical induction vector flow of first capacitor creates an
alternating magnetic field where along the force line we shall dispose the
ferromagnetic filament. The magnetic winding with alternating by time
magnetizing embraces the second capacitor plates inducing in latter the electrical
induction alternating flow. Therefore, in the load the electrical current will appear
with value depending on mutual capacity magnitude. The electrical induction flow
in each capacities will be consist of the algebraic sum of two flows: proper one,
which are created by electrical voltage between own plates, and mutual one, caused
by magnetic field intensity curl, i.e. depending on electrical voltage on another
capacitor. The capacity transformer equations are the following:
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I, =joC,U, +j0TU,,I, =fj0wTU, +jC,U,, where I,I, are currents of

capacitors, U,,U, - its voltages and T is mutual capacity between capacitors. On

the contrary to inductance transformer for the capacity one the optimal regime is
deals with small load impedance. This property may be useful for matching of high

impedance of source with small load impedance.
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CONCLUSION

The dielectric and magnetic properties of material are usually investigated with
separate action of electric and magnetic fields. This ideology owes, at first, to
historical way of electrodynamics establishment by means of combination and
generalization of electric and magnetic phenomena theories. Besides others, in
natural matters the macroscopic processes of polarization and magnetizing are
presented simultaneously very rarely, therefore usually materials are divided on
dielectrics and magnetics.

At present time the conditions are suitable for "wave" view establishment:
wave process in medium demands the equivalent and interrelated participation of
the dielectric and magnetic properties. Besides, the technical possibilities of
artificial media realization are very broad now. The realization of the functional
characteristics of devices with the help of appropriate parameters synthesis of the
inhomogeneous media - it is progressive technology of our days. It is sufficient to
remind the great achievements of integral microelectronics, integral optics.

This work spreads the exploration and application of media with the
interrelated dielectric and magnetic properties - binary materials. It is shown great
number of variants of the inhomogeneous isoimpedance media and circular
(globally plane, sphere) waves in this media. There are more generalized media
with factorizied permeability/permittivity ratio and generalized T,E,H-waves.

It is possible to forecast the further research directions. At first, the binary
material creation methods will develop, so as dielectric and magnetic particles
unification and their compositional creation in metal-air constructions. At second,
it is need to broad the theory of waves in binary media. There are perspective the
further investigations of anisotropic isoimpedace media, on controlled
isoimpedance materials which may be useful for electrical control lens antennas
[85]. The circular waves in the isoimpedance media due to variety and uniqueness
of some properties will find application in radio electronic, electroengineering
equipments that is shown in this work only partly.
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