
 

 

 

 

 

 

A.I.KNYAZ 

 

BINARY MATERIALS IN RADIO ELECTRONIC DEVICES 

 

 

 

 

 

 

 

 

 

 

ODESSA 

 

1994 

 

 

 
 
 
 
 
 



 2

KNYAZ A.I., BINARY MATERIALS IN RADIO ELECTRONIC DEVICES  
 

The binary materials are characterized with the interrelated matter equations 
which determine the dielectric and magnetic properties simultaneously. In these 
media, the electromagnetic waves are described with the new Maxwell equations 
solutions for example, in the form of the circular T,E,H-waves in the 
inhomogeneous isoimpedance media. Medium inhomogeneity and impedance 
constancy together create the unique conditions for the wave refraction with 
minimal scattering on the magnetodielectric bodies. The binary materials and 
circular (globally plane, sphere) waves are proposed for applications in antenna 
engineering as the circuit components miniaturization, in electronic and plasma 
devices, etc. 
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INTRODUCTION 

 

The creation of the radio electronic and electroengineering devices consists in 

the choice of the geometrical, mechanical, physical characteristics of the 

conductors, dielectrics, magnetics. The permittivity and permeability are contained 

in different material equations 

,HB,ED µ=ε=  (1) 

which determine the relations between electric field vectors E,D  and magnetic 

field vectors H,B  separately. 

Nowadays the great attention is devoted to the media which are described with 

the interrelated material equations. Generally they may be called as binary 

materials including following ones: 

a) bi-isotropic (chiral), 

b) segnetomagnetic, 

c) inhomogeneous with wave constant velocity, 

d) inhomogeneous isoimpedance. 

The material equations system for bi-isotropic medium [1, 2] is: 

,HEB,HED µ+κ−=κ+ε=  (2) 

where coefficient κ  accounts  the additional abilities of magnetic field to affect on 

dielectric properties and also the electrical field on magnetic properties. 

Segnetomagnetics are the crystals combining the properties of segnetoelectrics 

and magnetics [3, 4]. The material equations system for them contains the tensors: 

HˆEˆB,HˆEˆD µ+β=α+ε= . (3) 

The equations (2), (3) characterize the media with spatial dispersion. But in the 

case of lack of the mentioned effect the material may be described with the help of 

the interrelated material equation. It takes place if we use the coordinate 

interrelation condition in addition to equations (1) for the inhomogeneous medium 

and the following presentation of the ratio permittivity and permeability: 

0)]z,y,x(),z,y,x([f rr =µε . (4) 
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The significant results were obtained for two particular cases of the functional 

dependence (4): when the medium has constant wave number [5] and 

)z,y,x(/1)z,y,x( rr ε=µ , (5) 

or constant impedance [6-8] and 

)z,y,x()z,y,x( rr ε=µ . 

The shown media properties will be touched upon in the first chapter. The 

further chapters are devoted to detail description of the results in respect of the 

isoimpedance inhomogeneous media and the circular waves discovered by author. 
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CHAPTER 1. GENERAL INFORMATION ABOUT BINARY MATERIALS 

 

1.1. Chiral non-reciprocal media 

 

The chiral media are described with the help of equations (2) where the non-

reciprocity of medium is shown due to different signs of coefficients κ  in two 

equations. The variants of the real and image values of κ  are considered in details. 

The media have spatial dispersion because the relation between D  and Hκ  

corresponds to the interrelation between D  and spatial derivative for H  in form of 

Maxwell's equation HrotDj =ω . The last relation is owed to vector D  value at 

the fixed point of space depends upon vector H  values in nearpoints continuum. 

The most detailed analysis of the spatial dispersion problems has been conducted 

for plasma. The lack of tensors in formula (2) allows us to consider the chiral non-

reciprocal media also as bi-isotropic ones. The interest to these media is real in the 

optics where ones are called as optical active media. Besides, the chiral media are 

considering as essential materials for radioabsorbing coatings for UHF devices. 

 

 

 

 

1.2. Segnetomagnetic matters 

 

Even in the past century it was marked that the bodies containing non-

symmetrical moleculae may be polarized in the magnetic field and be magnetized 

in the electric one [3]. Later it was spoken out the assumption about existing of the 

substances with the polarization and magnetizing are caused by means of the 

electric field influence only. In the beginning of the sixties in the USSR it was 

obtained the segnetoelectrics with magnetic order which were called as 
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segnetomagnetics. In foreign literature same matters are called as ferroelectrics 

with magnetic order. 

The system of the material equations (3) for segnetomagnetics is often rewrote 

for the polarization and magnetizing vectors: 

HˆEˆM,HˆEˆP mmeeme κ+κ=κ+κ= , 

where emme ˆ,ˆ κκ - are tensors of the magnetoelectric and electromagnetic 

susceptibilities. The bibliography of the segnetomagnetic research up to 1989 is 

contained in two books [3, 4] where more than 1100 papers have been shown. A 

major attention of physicists and chemists is concentrated on the search of the 

matters with the sufficient values of the magnetoelectric and electromagnetic 

susceptibilities. Among possible technical applications of the devices in which the 

electrical field controls magnetic characteristics or magnetic field changes the 

electrical parameters were point out the optical switchers, phase shifters, 

magnetoelectric converter, etc.  

The important way of creation of the materials with an effective electric and 

magnetic subsystems interaction is using of the composite structures from ferrit and 

segnetoelectric films [4]. 

 

 

 

 

1.3. Inhomogeneous media with wave constant velocity 

 

There are existing a great number of the papers on electromagnetic waves 

investigation in the inhomogeneous media with continuos refraction coefficient 

rrn µε= . A Helmholz's equation with varying wave number 0c/nk ω=  is 

considered during the waves types analysis. Medium is usually considered as non-

magnetic one ( 1r =µ ), and variation of )z,y,x(nn =   is owed to non-constancy 

of permittivity εr. 
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Some waveguide systems with inhomogeneous filling are considered in 

monograph [5]. If we guess that const)z,y,x()z,y,x( rr =µε , (by using 

condition (5)) then we may use the constant wave number in the Helmholz's 

equation  and the analysis of the E,H-waves becomes simpler. It gives a possibility 

to build an algorithm of the medium synthesis according to the nessesary wave 

impedance dependence εµ= /ZC . So due to no information about the real 

material created under equation (5) realization in work [5], that applied aspects of 

these results aren’t clear. 

 

1.4. Some media with special properties 

 

The investigation on problem of the creation of some media with the special 

properties are closed to considering problem of the binary media description and 

creation.  The methods of creation of the ferromagnetic materials by means of the 

magnetized and isolating particles mixture have  almost one hundred years history 

[9-13].  

The essential reduce of the energy losses is provided in magnetodielectrics or 

ferrits are the most known class of the high frequency magnetic materials.  The 

investigations on production of the dielectrics with new properties are conducted 

parallelly [14-18]. 

The greatest number of works is doing now for the investigation and the 

utilization of the hybrid properties of the materials and the affections on them. Let 

us note only few of these directions. It is possible to affect on matter optical 

properties with the help of outer magnetic field [19, 20]. Devices are using the 

magnetostatic waves in iron-ittrij garnet will be useful for microwave engineering 

[21]. The important applications of the magnetic liquids take place at lower 

frequencies [22, 23].  

A lot of papers are devoted the nonlinear properties matter application for wave 

processes transformation at very high frequencies including optical band [24-28]. 
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The problems of bi-isotropic (chiral) media [1, 2, 29-32] and segnetomagnetics 

[3,4,33-35] researches are more closed to the problems of the isoimpedance 

electromagnetic media creation. 

 In order to develop works on artificial isoimpedance media, one can use the 

results on artificial dielectrics and magnetodielectrics realization [36-43]. Before 

inhomogeneous isoimpedance media will be created, it is necessary to come throw 

a stage of homogeneous media creation with dielectric and magnetic properties 

combination. The ferromagnetism phenomena is absent on high frequencies 

[44,45], therefore the magnetosoft materials may exist when we use the frequencies 

no more  then few hundreds MHz [9-11]. The known method of the compositional 

materials fabrication is method of their creation from plates, rods [46-50] and a 

transition to smooth inhomogeneous media [51,52]. It is important to research the 

powdery ferromagnetics and dielectrics and it will be useful the results of powdery 

dielectric application in antenna engineering [53] and some ideas on dusty media 

creation with combinational properties [38,54]. 
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CHAPTER 2. WAVES IN THE ISOIMPEDANCE MEDIA 

 

2.1. Globally plane and sphere waves 

The traditional representations of the plane and sphere waves with transverse 

intensities 
)kt(j1

cm
)kt(j

m eZEH,eEE ζ−ω−
⊥

ζ−ω
⊥ ==  (2.1) 

are corresponded to plane-parallel fronts when z=ζ  ( Fig.2.1,a ) or to sphere-

parallel fronts when 222 zyxr ++==ζ  (Fig.2.1,b). The energy propagation 

takes place in the homogeneous medium with wave impedance 

rr0c /Z/Z εµ=εµ=  (2.2) 

along the parallel straights (z) or along the divergent straights ( r-rays ). 

 
                                                                                                                             ζ=r=C 
                                                                                                                                  
                                                                                                                              H                     r 
 
                                   H                                z 
 
                                                      E                                                П 
                          П                                                                                                 E 

                                                           ζ=z=C 
 
 

                                                      а)                                                       b) 
 

Fig. 2.1 

The phase velocity is equal to 

n/c/c/1k/v orro =εµ=µε=ω= . (2.3) 

If the longitudinal components are equal to zero )0H,0E( == ζζ , in the 

electromagnetic wave that the equations (2.1) are corresponded to transverse type   
(T) wave. By 0H,0E =≠ ζζ  or 0E,0H =≠ ζζ  we have the electrical and 

magnetic wave types for which we guess that k in formulae (2.1) as longitudinal 

wave number and to use impedance  E
cZ  or H

cZ  instead of magnitude (2.2). 

Approaching the consideration of the waves in the inhomogeneous media we 

mark the cases when the intensities representations (2.1) are justified also. 
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According to well known geometrical optics method the equations (2.1) give the 

local plane representation for the wave in medium with slow refraction coefficient 

n(x,y,z) variation. 

The author develops other direction which begins from a question: what are 

media where wave with intensities (2.1) will has non-local but global plane or 

sphere fronts ? With account of the demand of the orthogonal disposition ⊥⊥ H,E  

to unit vector 0ζ  it needs to consider a problem with the utilization of the 

orthogonal curvilinear coordinates ζηξ ,, . Therefore from infinite number of 

situations with C=ζ  as planes and spheres it is necessary to select only cases 

when surfaces C,C,C =ζ=η=ξ  ( where C=ζ  are planes and spheres ) 

perform three-orthogonal surfaces system. 
 
                                                               z                                                                            z 
 
                                                                                                                       H 
                                      ζ=ϕ=С 
 
                                                  H     E                                                         
                                                                                                                               П    E 
 
                                                 П 
 
 
 
                                                                                                                            ζ=С 
                                            ρ 
                                                      а)                                                               b) 
 
 
                                                         z 
 
 
                                                                                    E                                                                         П      E      
 
                                                                   
                                                                             H   П                             ρ                                                                   
 
                                                         a 
                                                   ρ 
 
 
                                    ζ=С                                                                   ζ=С 
 
 
                                                     c)                                                             d) 
 

Fig. 2.2 
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The problem in given geometrical recognition has been investigated else in 

[55,56] where was shown that the plane or spherical basics make four new families 

shown on Fig. 2.2. in addition to two families represented on Fig. 2.1. The plane-

base (PB) and the sphere-base (SB) coordinate systems are described with details 

in [7,55,56]. The general research of global plane (sphere) waves in the 

isoimpedance inhomogeneous media was made later in [6-8,57] where terms 

neoclassical or circular waves were used. 

As was found to that all six classes of global plane (sphere) waves demand for 

their existence of fulfillment as the isoimpedance medium condition 

constZ/ c ==εµ , (2.4) 

so and the condition of matching with metrical coefficient ( Lame's one ) for phase 

front families C=ζ : 

ζζ=ζηξµ=ζηξε h/h),,(),,( Crr , (2.5) 

where Chζ - numerical value of Lame's coefficient in a some point of space. 

The waves with plane-parallel and sphere-parallel fronts (Fig.2.1,a,b) are 

observed in the homogeneous medium where conditions (2.4),(2.5) are 
1hh,ZZ Crr0C ===µ=ε= ζζ . The waves with plane-axis ( Fig.2.2,a ), sphere-

point (Fig.2.2,b), sphere-axis (Fig.2.2,c), bi-spherical (Fig.2.2,d) fronts take place 

in the inhomogeneous isoimpedance media where equation (2.5) is appropriately: 
22

rr yx,/a.PBII +=ρρ=µ=ε , (2.6) 

222222
rr zyxr,r/a.SBII ++==µ=ε , (2.7) 

222222
rr a4)ar(/c.SBIII ρ−+=µ=ε , (2.8) 

222222
rr az4)ar(/c.SBIV −+=µ=ε . (2.9) 

On shown figures double pointers correspond to the Pointing's energy vector lines, 

i.e. to the energy flows. The ability of choice of the different constants a, c in 

formulae will be considered later. Each of six global (sphere) waves classes has 

four subclasses which according to known terminology are called T,E,H,EH types 

of the waves. The calculating formulae for transverse intensities components in E-
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wave are obtained in [7,8,57] from the Maxwell's equations in PB, SB coordinate 

systems of the following form:  
E
c

E
0

E
0

EE
c

E Z/EUjH,UjHZ/E ηηξξηξ −=′σωε=′σωε−== , (2.10) 

where ζζζζ =γ=β−=σωεβ= EhU,hh)k(hh/1,/Z 2
C

22
0C0

E
c , (2.11) 

or for Í-wave: 

ξξηηηξ ′βσ−==−′βσ−== VjHZ/E,VjHZ/E HH
c

HHH
c

H , (2.12) 

where ζζ=βωµ= HhV,/Z 0
H
c . (2.13) 

The functions U,V are determining according to (2.11), (2.13) the field vectors 

longitudinal components and according to (2.10), (2.12) transverse components, 

have the view: 
)ht(j)ht(j CC e),(vV,e),(uU βζ−ωβζ−ω ζζ ηξ=ηξ= , (2.14) 

where ),(u ηξ  or ),(v ηξ  are two-dimentional equation 

0uhuu 22
r

2 =γε+′′+′′ ηξ . (2.15) 

solutions. Now it therefore remains only to recognize the boundary problem for 

equation (2.15), including the data about guiding conductors, to find the 

longitudinal wave number β  and functions u,v in order to have  all components of 

wave intensity vectors from (2.10)-(2.14). 

 The only change of the constant nearby ζ  takes place in phase multiplicator (2.14) 

during the generalization of representation (2.1) for 46×  variants of global plane 

(sphere) waves. 

The circular waves also exist in the inhomogeneous anisotropic media if for 

components of tensors µε ˆ,ˆ , from the material equations of media 

 

∑∑∑ ∑
=ν

νν
== =ν

νν µ=µ=ε=ε=
3

1
n

3

1n

0
n

3

1n

3

1
n

0
n HxHˆB,ExEˆD

rr
, 

the relations 

,3,2,1,n;hh,hh C
nC3n3

C
nC3n3 =νµ=µε=ε νννν  

0,0 C
32

C
31

C
32

C
31 =µ=µ=ε=ε , (2.16) 
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are valid in the case when C
n

C
n , νν µε  are constants. If these numbers no depend on 

frequency ω , one can  put εµω=β  and  take 000k µεω==β  without the 

generalization limitation. The requirement of the Maxwell's equations system 

compatibility leads to relationship between numbers C
n

C
n , νν µε  : 

C
12

C
12

C
22

C
1100C

11

C
21

C
11

C
12

C
11

C
12

C
11

C
21

C
11

C
22

C
11

C
22 ,,, µε−µε=εµ

ε
ε=

µ
µ

ε
ε=

µ
µ

ε
ε=

µ
µ

. (2.17) 

The relations (2.16), (2.17) for the plane-parallel and sphere-parallel T-waves were 

obtained earlier [58]. 

The circular waves have a lot of properties of the waves in homogeneous 

media. So, for circular T-waves the known properties of usual T-waves are 

observed: a) the frequency independence of force lines structure, b) the impedance 

independence from coordinate of point observation, c) the real character of 

impedance and coincidence on the phase electrical and magnetic fields intensities, 

d) the ability of transmission line theory application with voltage, current, 

inductances, capacities introduction, etc. 

The phase velocity of circular wave is calculated similarly to (2.3) with take 

account of (2.14): 

rCt /h/hhv βεω=βω=ζ′= ζζζ . (2.18) 

The energy transmission velocity also is different in different points: 

0
C

0
22

р–

р–
э c

h

hc1

4/)HE(

2/)HERe(
w

v ≤=
µε

=
µ+ε
×=

Π
=

ζ

ζ
∗

. (2.19) 

 

2.2. Isoimpedance media and bodies 

 

Let us now consider the properties of those isoimpedance media which due to 

relations (2.6)-(2.9) provide the plane or sphere character of wave front in the total 

variety of points on surface C=ζ  (Fig.2.2). As theoretically so as practically it is 

convenient to describe four variants of isoimpedance media with the help of the 

surfaces of the equal magnitudes permeabilities. 
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2.2.1. For inhomogeneous medium with parameters (2.6) the circle cylinder 

surfaces C=ρ  are ones of constant values of rr ,µε . Choice of some radius a 

means that we have the decelerating medium with 1rr >µ=ε  when a<ρ   and 

the accelerating one when a>ρ . The continuous reverse proportional relation 

(2.6) may be realized in the stratified magnetodielectric with cylinder layers of 

constant values rr µ=ε . The half-planes C)x/y(arctg ==ζ  are orthogonal to 

surfaces Crr =µ=ε  as the phase fronts of plane-axis waves (Fig.2.2,a). 

2.2.2. The medium, characterized by functions (2.7), has the concentric spheres 

r=C as the surfaces of the equal values Crr =µ=ε . The step-stair realization of 

this medium is consist of sphere areas. In the points when r<a, the medium is 

decelerating (n>1) and accelerating (n<1) when r>a it is. For sphere-point waves 

(Fig.2.2, b) phase fronts are spheres Cr/z 2 ==ζ , which are not orthogonal to 

the spheres of the equal values Cr/a 22
rr ==µ=ε . 

2.2.3. We have possibility to take constants a,c in the relation (2.8) so that 

demarcation surface 1rr =µ=ε  becomes  having some geometrical variants.  For 

surface  rcr ε=ε  we have equation 

42
rc

4222222 a/c)z(a2)z( −ε=−ρ−+ρ , (2.20) 

which determines the known Cassini's curves families (Fig.2.3) on the plane ρ, z. 

 
 

Fig. 2.3 

z 

ρ 

  2a 

а 

b 

c 
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Surfaces rcr ε=ε  are created with the help of Cassini's curves rotation around axis 

z, i.e. they are surfaces of rotation. Four different forms of Cassini's curves are 

shown at Fig.2.3 that allows to choose the demarcation surface  1rr =µ=ε  

represented in four views: a) oblate ellipsoidal when 2ac > , b) ellipsoidal with 

recess by 2aca << , c) ellipsoidal with minimum recess         ( point 0z ==ρ  

) by c=a, d) like thoroid when c<a. Shown on Fig.2.3 points M in cases a)-c) have 

coordinates 22 a/c1a,0z +=ρ= , and in case d) coordinates are 
22 a/c1a,0z −=ρ= . The isoimpedance medium, located inside surface 

1rr =µ=ε , is decelerating (n>1), and located outside is accelerating ( n<1 ).  We 

note that the phase fronts C=ζ  of the sphere-axis waves (Fig. 2.2,c) are not 

orthogonal to the surfaces Crr =µ=ε . 

2.2.4. The medium with permeabilities from (2.9) has surfaces of the constant 

value permeabilities with equation 
42

rc
4222222 a/c)z(a2)z( −ε=ρ−−ρ+ . (2.21) 

Obviously, in the equations (2.20), (2.21),we need to make the substitution of z,ρ . 

The surfaces rcr ε=ε  are formed by means of Cassini's curves rotation, shown on 

Fig.2.3, corresponding to the horizontal axis which is axis z after exchange of the 

variables. Now surface 1rr =µ=ε  may have four   following views: a) a lengthen 

ellipsoidal if 2ac > , b) a lengthen ellipsoidal with waist when 2aca << , c) 

two dropview surfaces with common point   0z ==ρ  if c=a, d) two separate 

dropview surfaces when c<a. The shown demarcation surface divides total space 

on decelerating inside medium and accelerating outside one. The phase fronts of 

the bi-spherical waves (Fig.2.2,d) are not orthogonal to surfaces Crr =µ=ε , 

shown on Fig.2.3. 

We can make “separations” from infinite inhomogeneous matter and fill the remain 

part of space with an air. If it is made over surface 1rr =µ=ε , that the 

continuation of permeabilities on boundary is provided. We have isoimpedance 

decelerating body by means of leaving of the inhomogeneous material inside 

surface 1rr =µ=ε . If, on the contrary, an air is inside demarcation surface, we 
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have cavity in the accelerating inhomogeneous medium. It’s possible to have some 

intermediate variants: the air cavity in decelerating-accelerating medium or the 

decelerating-accelerating coating in an air. 

The electromagnetic field in the isoimpedance body of finite size will be a 

circular wave when the waveguiding conductors are used additionally. 

 

2.3. T-waves in the inhomogeneous media 

 

The T-waves with plane-parallel phase fronts which are used in all feeders: 

multiconductors lines, coaxial cables, etc. are known mostly. The waves with 

sphere-parallel fronts are guided with multicones conductors with divergent (ray) 

currents [56,59]. Let us now consider in greater detail four classes of T-waves in 

the isoimpedance inhomogeneous media which were described above.  
The PB, SB coordinate systems application, where  hhh == ηξ , allows to 

represent Maxwell's equations in convenient form [7,57], we have equations for T-

wave )k,0H,0E( 000 εµϖ==β== ζζ : 

ξηηξηηξξηξξη −==′−=′′=′ HZE,HZE,)hE()hE(,)hE()hE( 00 . (2.22) 

The intensities components are determined with the help of the analytical 

function of complex variable )i(W η+ξ : 
ζ−

ηξ
ζη+ξ=− Cohjke)i(W)iEE(h . (2.23) 

2.3.2. The simplest circular wave is one rotating along coordinate ϕ=ζ  in the 

isoimpedance medium with permeabilities in (2.6). If the indicated material fills a 

space between two coaxial metal cylinders with radii 21, ρ=ρρ=ρ , the field 

intensities are equal to 
ϕρ−−

ρ ρ−ρ=−== 20jk1
12z0 e)(UHZEE , (2.24) 

where U is voltage between two conductors. Formula (2.24) is written with 

using of the formulas (2.22), (2.23), accounting the equations 1h,,z =ρ=η=ξ . 

In accordance with formulas (2.18), (2.19), the linear phase velocity and the 

velocity of energy transmission are 20э /cvv ρρ== . They are maximum, if 
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2ρ=ρ , and minimum, if 1ρ=ρ . As is well known, the expression 

)x/y(arctg=ϕ , is the uniquely determined function only in the case when   

π<ϕ< 20  . Practically a circular wave with intensities (2.24) may be  realized, if 

to take energy from source which is coupled with half-plane ϕ = 0. Further the 

wave transmits this energy along circle toward to the resisting wall coinciding with 

half-plane π=ϕ 2 . 

Consider now the circular T-wave followed the currents in thin wire winding 

immersing in the isoimpedance medium with perameabilities (2.6). 

Two loops with radii 1ρ  and 2ρ , placed in planes 1zz =  and 2zz =  are 

represented at Fig. 2.4,a. 
 
                                             Z                                                                                         Z 
 

           ρ1 
 
 

                                                                                                                                                                                 ρ 
                 П 

                                                                    ∼                                                                                 ρ1 
 

           ρ2                                                                                                                   b) 
 
                                                                                                                                        Z 
 

                                                                           ρ 
  
                                       a) 
 

                                                                                                                                                                                    ρ 
 
 

                                                                                                                                                             ρ1 
                                                                                                                                   c) 
 

Fig. 2.4 
 

The circular wave is running in direction from generator to load, and an 

influence on the field of the opposite directed and nearly placed currents in the 

generator and load may be neglected. In accordance with (2.23), we have equations 

for field intensities: 



 19

{ −







ρ+ρ+−

−
ρ−ρ+−

−ρ== ρ 2
1

2
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1
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1100z )()zz(

1

)()zz(
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)zz(EHZE
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
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
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ρ+ρ+−

−
ρ−ρ+−

−− ajk

2
2

2
2

2
2

2
2

2
oe}

)()zz(

1

)()zz(

1
)zz( , (2.25) 

−
ρ+ρ+−

ρ+ρ−
ρ−ρ+−

ρ−ρρ=−=ρ 2
1

2
1

1
2

1
2

1

1
10z0 )()zz()()zz(
[EHZE  

ϕ−

ρ+ρ+−
ρ+ρ+

ρ−ρ+−
ρ−ρ− ajk

2
2

2
2

2
2

2
2

2

2 oe]
)()zz()()zz(

, (2.26) 

where the radius a corresponds to cylindrical surface which separate the 

decelerating area )a( <ρ  and the accelerating area )a( >ρ  in the infinite 

isoimpedance medium. In writing formulas (2.25),(2.26) we have taken into 

account formula (2.23) for 0→ρ  when we have the perfect conductor filament 

( )∞→ε , where, according to (2.25), 

 ϕ−
ρ 








ρ+−

ρ−
ρ+−

ρρ−== ajk

2
2

2
2

2
2
1

2
1

1
10z

oe
)zz()zz(

E2E,0E . 

The fields, creating by currents of two cylindrical (Fig.2.4,b) or plane 

(Fig.2.4,c) windings from w turns, are finding with the help of formulae 

(2.25),(2.26). We have at first case: 

∑ ∑
= =

π−−ϕ−ϕ− ==
w

1n
zn

w

1n

2)1n(ajkajk
zn

ajk EeeEeE oono , 

n

w

1n

2)1n(ajkajk EeeE oo
ρ

=

π−−ϕ−
ρ ∑= ,where (2.27) 
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n10zn )()zz(
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)()zz(
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)zz(EE  

∑
=ν ν

ν
−ν

ν

ν
−ν

ρ 







ρ+ρ+−

ρ+ρ−−
ρ−ρ+−

ρ−ρ−ρ=
2

1
22

n

1

22
n

1

10n )()zz(
)()1(

)()zz(
)()1(

EE , (2.28) 

where nbzn =  and number b is wire diameter. It was considered in (2.27), (2.28) 

that the angle coordinate for a turn with number n is )1n(2n −π+ϕ=ϕ  where 

π<ϕ< 20  corresponds to the first turn. 
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The phasing mode is of interest in its own right when radius a of surface 

1rr =µ=ε  is chosen according to condition of the “matching” with wavelength 

f/c00 =λ : 

πλ= 2/ma 0 . (2.29) 

In the case of fulfillment of the equation (2.29), the intensities are maximum 

because of summation of the uniphase (real) summands (2.28) in the (2.27). 

The plane windings application (Fig.2.4,c) is accompanied with formulae 

(2.27) where, instead of formula (2.28), it is necessary to take 

∑
=ν ν

ν
−ν

ν

ν
−ν

ϕ−








ρ+ρ+−

−−−
ρ−ρ+−

−−ρ=
2

1
2

n
2

1

2
n

2

1
ajk

10zn )()zz(
)zz()1(

)()zz(
)zz()1(

eEE o , 

∑
=ν ν
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−ν
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ρ 







ρ+ρ+−

ρ+ρ−−
ρ−ρ+−

ρ−ρ−ρ=
2

1
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n
2

n
1

2
n

2
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1
ajk

10n )()zz(
)()1(

)()zz(
)()1(

eEE o  (2.30) 

In the formulae (2.30) we need to consider the relation b)1n(1n −+ρ=ρ . 

2.3.3. The sphere-point T-waves may be observed in medium with 

permeabilities (2.7). If coordinates SBII [56] 
2222 rhh,r/z,r/y,r/x ===ζ=η=ξ ζ  (2.31) 

are used, one of simplest waves is T-wave which according (2.23) has intensities 
22

o
2

o r/zajk22
0

ajk22
00 eraEeraEHZE −−ζ−−

ηξ === . (2.32) 

The phase fronts are spheres C=ζ  tangenting each other in the point x=y=z=0 

(Fig.2.2,b). In accordance with (2.18), (2.19) we have for the velocities 
22

0r0э a/rc/cvv =ε== . Poiting's energy vector lines are circles which are 

started in point r=0 when z<0 and are finished in same point but when z>0. Since, 

according to (2.32), the electrical field intensity wave vector is orthogonal to 

surface Cr/x 2 ==ξ , that the complete  metallization of two these surfaces 

doesn't affect on the T-wave structure. Hereby, the T-wave will propagate in the 

screening volume between two spheres 1
2 Cr/x =  and 2

2 Cr/x = , which are 

tangented in the point x=y=z=0  geometrically( but not electrically). 

One more example of the sphere-point T-wave we have by using of another 

SBII class coordinate variant [56], namely: 
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 222 rh,h,r/z),x/y(arctg),r/aln( =ρ==ζ=ηρ=ξ ζ . (2.33) 

Surfaces C=ξ  are thoroidal ones without hole, immersing each in other so that 

their common point is x=y=z=0. We have relations for intensities: 
22

o r/zajk1
00 eaEHZE −−

ηξ ρ== . 

2.3.4. The sphere-axis T-waves, transmitted an energy around circle line a=ρ  

(Fig.2.2,c), may exist in the medium with permeabilities (2.8). Let us use one of 

SBIII coordinate variant: 
222222222 a4)ra(/)ra(cos),x/y(arctg],a2/)ar[(Arch ρ−+−=ζ=ηρ+=ξ

a2/a4)ra(hshh),coscth(sh/ah 22222 ρ−+=ξ=ζ−ξξ=ρ= ζ . (2.34) 

In space between perfect conducting thoroids 21 C,C =ξ=ξ  along lines ζ , i.e. 

along small radius circles, T-wave is rotating, and it has intensities    
a2/cjk1

00

2
oeaEHZE ζ−−

ηξ ρ== , (2.35) 

where constant 2c  corresponds to formulae (2.8),(2.20). We have for velocities 
222222

0rэ c/a4)ar(c/cvv ρ−+=ε== . Since the consideration of  equation 

(2.20) it was explained that there are exist four variants of values 22 a/– , to which 

four variants of values  )z,()z,( rr ρµ=ρε  are correspond to the matter filling a 

space between the thoroids.  

It is interesting to excite sphere-axis T-wave with the help of two thoroidal 

windings, each of them has w turns. The turns placement planes are specify with 

the help of the angle coordinate η from (2.34) as the relation 

ϕ∆−+ϕ=ϕ=η )1n(1n , where magnitude ϕ∆  determines wire ratio diameter. 

Taking into account the demands of symmetry by coordinate ξ and  periodical 

behavior to coordinate η, we have equation , according (2.23): 

×ρ=+=− −ζ−
ξηηξ

1a2/cjk
00 aeE)iHH(ZiEE

2
o  (2.36) 

[ ] [ ]{ }∑∑
= =ν

νν
ν η−η+ξ+ξ+η−η+ξ−ξ−−×

w

1n

2

1
nn )(icth)(icth)1( . 

The windings occupy a sector of angles from 1ϕ  to ϕ∆−+ϕ )1w(1  becoming in 

all thoroidal windings, when π=ϕ∆ϕ∆=ϕ 2w,1 . 
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2.3.5. At last, bi-spherical T-waves in medium with permeabilities (2.9) are 

analyzed with the help of SBIV class coordinates: 

 
22222

2222

a4)ar(

ra
ch,

x
arccos,

a2
ar

Arsh
ρ+−

+=ζ
ρ

=η
ρ
−=ξ , 

)thch/(ah),thch(ch/ah ξ−ζ=ξ−ζξ= ζ . (2.37) 

The simplest T-wave transmits an energy along parts of circles var=ζ  from point  

x=0, y=0, az −=  to point x=0, y=0, z=a. The field intensities are  
a2/cjk

00

2
oe)thch(chEHZE ζ−

ηξ ξ−ζξ==  where constant 2c  is corresponded to 

equations(2.9),(2.21). 

 

2.4. Electrical and magnetic waves  

 

2.4.1. The electrical and magnetic waves with plane-parallel fronts are widely 

used in the microwave waveguides. The sphere-parallel phase fronts are observed 

for E,H-waves with small radial intensities components radiating by all antennas. 

Let us now consider four classes of E,H-waves in the isoimpedance media with 

permeabilities (2.6)-(2.9). The general view formulae (2.10)-(2.14) are justified for 

all cases, it is necessary only to apply the variable separation method to equation 

(2.15) in order to have formulae-solutions. 

According to variable separation method the equation (2.15) solution is finding 

as series 

∑ ηψξϕ=ηξ
m

mm )()(),(u , 

that leads to two separate ordinary differential equations 

0]m)(p[ 2 =ϕ+ξ+ϕ′′ξ , (2.38) 

0]m)(q[ 2 =ψ−η+ψ′′η , (2.39) 

if medium and PB,SB coordinate systems variant allow to separate the variables in 

coefficient )(q)(ph/hhh 22
C

2222
r

2 η+ξ=γ=εγ ζζ . 
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2.4.2. In coordinates PBII, when 1h,,z 2 =ρ=η=ξ , and for medium with 

permeabilities (2.6) we have 222 /a)(q,0)(p ηγ=η=ξ , hence equation (2.38) 

solution is )b/jmzexp(m ±=ϕ , and equation (2.39) acquires a view 

0)b/ma( 222222 =ψη−γ+ψ′′η η , (2.40) 

where unitless character of number m is provided with the help of constant b. The 

equation (2.40) solutions are elementary functions [60] for proper transverse wave 

number γ  magnitude. So, for )n1(na 22 −=γ , where n-natural number, we have  

( )b/m
2

b/m
1

n

n
m eCeC

d
d1 ρ−ρ +







ρρ

ρ=ψ . (2.41) 

If )n1(na 22 +−=γ , that 

( )b/m
2

b/m
1

1n

1n
m eCeC

d
d1 ρ−ρ

+
+ +








ρρ

ρ=ψ  

The simplest E,H-waves are ones which have intensities non depending from 

coordinate z, that take place for m=0. In this case equation (2.40) solutions are 

described by expressions 









=γρ+
>γ−=κρ+ρ

>−γ=κρκ+ρκ
ρ=ψ κ−κ

.4/1),b/ln(CC

,04/1,CC

,04/1),b/lnsin(C)b/lncos(C

2
21

22
21

22
21

 (2.42) 

For example, let us show the calculating relations for circular E,H-waves in coaxial 

resonator between two perfect conducting cylinders  21, ρ=ρρ=ρ . A boundary 

condition for electrical waves is 0=ψ  for 21, ρ=ρρ=ρ . The simplest E-waves, 

non depending from coordinate z, in accordance with (2.10),(2.11),(2.40),(2.41), 

are specified with formulae: 

)/ln(/)/ln(n)(,e)](sin[E 121
j2/1 2 ρρρρπ=ρθρθρ= ϕβρ−−

ϕ , 

∂ρ
ρ∂

γ
ρϖε=

∂ρ
ρ∂

γ
βρ−= ϕϕ

ρ

)E(j
H,

)E(j
E

2
20

2
2 . 

The boundary conditions give for transverse and longitudinal wave numbers: 
2
cr

22
0cr2 /4k,/2 λπ−=βλπρ=γ , (2.43) 
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where critical wavelength for some n ( n=1,2,... ) is number 

( )[ ]2122cr /ln/n4/1/2 ρρπ+πρ=λ . (2.44) 

Since consideration of the circular waves in channel waveguides, 

corresponding to PBII, SBIII classes coordinates, the variation area of variable ζ 

must be finite )20( π≤ζ≤ . As untraditional condition we have a demand of 

circular wave auto-phasing in view of periodicity condition 
π+β=π+ζβ ζζ 2h)2(h CC , which for considering E-waves gives 

12 =βρ . (2.45) 

With account (2.43), (2.44) from (2.45) we have for frequency  
2

cr
2

0 )2(cf −− λ+πρ= . (2.46) 

It is not difficult to see that wavelength f/–00 =λ   for auto-phasing 

frequency (2.46) satisfy the condition cr0 λ<λ . 

For paraboloidal coordinate system from class PBII, specifying with formulae 

)x/y(arctg),iz(2)i( 2 =ζρ+=η+ξ , we obtain  
222222222222

C /a)(q,/a)(p),/1/1(ah/hh ηγ=ηξγ=ξη+ξ=ζζ , 

hence both equations (2.38),(2.39) have a view likes the equation (2.40). As for 

expression  )(ξϕ  finding so as for )(ηψ , we can  use formulae (2.41),(2.42). The 

boundary surfaces for the E,H waves are paraboloids of rotation C=ξ  or C=η  

Third coordinate system from class PBII, introducing with the help of relations 

,),isin(a/)iz( ζη+ξ=ρ+  has the relation 

)sh/1cos/1(ah/hh 222222
C η+ξ=ζζ , 

therefore equations (2.38),(2.39) acquire a view: 

0)sh/am(,0)cos/am( 22222222 =ψηγ+−+ψ′′=ϕξγ++ϕ′′ ηξ . (2.47) 

In some cases the equations (2.47) solutions are writing as simple expressions 

[60]. So, if transverse number γ  is chosen from condition   )n1(na22 −=γ , 

where n-natural number, we have 

( )m
2

m
1

n

n
m eCeC

d

d

cos

1
cos −ξ−−ξ +








ξξ

ξ=ϕ . (2.48) 
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Note, that the coordinate surfaces C=ξ  are hyperboloids of rotation and  

η = C are lengthen ellipsoids of rotation. 

One more coordinate system from class PBII, when )isin(a/)iz( η+ξ=+ρ , 

determines surfaces C=ξ  as hyperboloids of rotation, and η = C are oblate 

ellipsoids of rotation. The coefficients in equation (2.5) are 

)ch/1sin/1(ah/hh 2222222
C

2 η−ξγ=γ ζζ . Hereby obtained equations (2.38), 

(2.39) are similar by view to equations (2.47) that allows to use formulae (2.48). 

2.4.3. The sphere-point E,H-waves research is making with coordinates SBII 

participation specifying by means of formulae (2.31),(2.33). In first case 
22

C
22 ah,1h/h == ζζ , hence equations (2.38),(2.39) are 

 0m,0)ma( 2222 =ψ−ψ′′=ϕ+γ+ϕ′′ ηξ . (2.49) 

The equations (2.49) have constant coefficients, therefore the solutions are 

exponential functions. According to coordinates (2.33) we have 
ξ

ζζ =ρ= 22424222
C ear/ah/hh , and the equation (2.38) is the following: 

0)mea( 2222 =ϕ+γ+ϕ′′ ξ
ξ , ( 2.50) 

but equation for )(ηψ  looks like as in formulae (2.49). For m=0, the equation 

(2.50) solutions are expressing with the help of the elementary functions, and for 

0m ≠  it is necessary to use Bessel's functions [60]. 

2.4.4. The class of SBIII coordinates, given by formulae (2.34), is used for the 

sphere-axis E,H-waves analysis. As a2/ch,sh/1h/h 2
C

222 =ξ= ζζ  the 

equations (2.38),(2.39) are: 

0m,0)sha4/cm( 222422 =ψ−ψ′′=ϕξγ++ϕ′′ ηξ . (2.51) 

The choice of constant 22 a/c  may be different that was explained for formulae 

(2.8),(2.20). The first equation from (2.51) is similar to second equation from 

(2.47). 

2.4.5. In class SBIV coordinates the bi-spherical E,H-waves are specified. With 

account of relations ξ=ζ
222 ch/1h/h , a2/ch 2

C =ζ  equations (2.38),(2.39) are 

obtained in view 
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0m,0)cha4/cm( 222422 =ψ−ψ′′=ϕξγ++ϕ′′ ηξ . (2.52) 

The equations (2.52) analysis is similar to equation (2.51) one. 

Therefore, at least, for shown coordinate systems variants ( four from class 

PBII, two from class SBII, one  from classes SBIII, SBIV ) analysis of E,H-waves 

in corresponding isoimpedance media we may  do entirely with the help of (2.10)-

(2.14) because variables separation method is applied to equation (2.15). 

 

2.5.Media with factorizied permittivity/permeability ratio 

 

2.5.1. The generalization of relations (2.4)-(2.9) is the following equations for 

permeability and perrmittivity: 

),(B)(A/ ηξζ=εµ , (2.53) 

ζζ ηξβζα=µζηξηξβζα=ε h/),()(),,,(h/),()( mmee , (2.54) 

which we shall consider in six classes  of PB,SB coordinate systems. In accordance 

with (2.54), in classes of the PBI,PBII,SBI coordinates we have factorization for 

permittivity and permeability separately. It is not justified for the media, describing 

in SBII-SBIV coordinates, due to impossibility to do factorization of Lame's 
coefficient ),,(h ζηξζ . Shown media allow the existence of new wave variants 

that below will be represented as generalization of results for global plane and 

sphere waves. 

If to determine  any wave type impedance as electrical and magnetic fields 

intensities transverse components ratio, the considering media may be called ones 

with factorizied impedances. It take place as due to relation (2.53) so due to Lame's 
coefficients property hhh == ηξ  for transverse coordinates of PB,SB systems. 

The reference of  these media to binary ones is owed to relation(2.53) which 

will be further specified when functions ),(),( m,em,e ηξβζα  will be determined on 

dependence of propagating wave type. 

Let us now consider the general investigation of classical problem about 

possibility of scalarization of the electrodynamical vector equations. 
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2.5.2. The scalarization problem is one of transformation of Maxwell's 

equations system into separate equations for field vectors coordinates components 

which for homogeneous media had been considered by Abraham, Bromwhich, 

Debau [64]. Let us research the problem for generalized media with permeabilities 

(2.54). We are starting from Maxwell's equations system, which is wrote for 

calculating intensities vectors components ),,(H,E ζηξ=ννν , which linearly 

depend on physically existing components νν H,E : 

νννννν == HhH,EhE ,  

where νh -Lame's coefficients ζηξ ηξ=== h),(phhh(  ). Namely: 
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EE

,0Epj
HH
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HH
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HH

me2

ee
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−
∂ξ
∂

=ωκ−
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∂

−
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∂

ξ
ηζ

ζ
ξη

η
ζξ

ξ
ηζ

 

0Hpj
EE

,0Hj
EE m2m =κω+

∂η
∂

−
∂ξ
∂

=ωκ+
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∂

−
∂ζ
∂

ζ
ξη

η
ζξ , 

( ) ( ) ( )
( ) ( ) ( ) ,0HpHH

,0EpEE
m2mm

e2ee

=′κ+′κ+′κ

=′κ+′κ+′κ

ζζηηξξ

ζζηηξξ  (2.55) 

where, for permittivity and permeability of medium, formulae (2.54) were taken 

into account and also denotations are used: 

),()(h),,()(h mmmeee ηξβζα=µ=κηξβζα=ε=κ ζζ . (2.56) 

 The scalarization procedure will be discovered the most evident after creation 
from transverse components ηξ E,E  and ηξ H,H  the complex-spatial transverse 

intensities (binary ones) ξηξη Hi+H=H,Ei+E=E  which are functions of 

longitudinal coordinate ζ and complex variables   η−ξ=γη+ξ=γ i,i . Let us 

collect from eight equations (2.55) the four systems of pairs:  

∂ζ
κ∂

−=
∂η
κ∂

+
∂ξ
κ∂

ωκ−=
∂η
∂

−
∂ξ
∂ ζηξ

ζ
ξη )E(

p
)E()E(

,Hpj
EE e

2
ee

2m , (2.57) 

∂ζ
κ∂

−=
∂η
κ∂

+
∂ξ
κ∂

ωκ=
∂η
∂

−
∂ξ
∂ ζηξ

ζ
ξη )H(

p
)H()H(

,Epj
HH m

2
mm

2e , (2.58) 
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,
E

Hj
E

,
E

Hj
E mm

∂ξ
∂

=ωκ+
∂ζ
∂

∂η
∂

=ωκ−
∂ζ
∂ ζ

η
ξζ

ξ
η  (2.59) 

∂ξ
∂

=ωκ−
∂ζ
∂

∂η
∂

=ωκ+
∂ζ
∂ ζ

η
ξζ

ξ
η H

Ej
H

,
H

Ej
H ee . (2.60) 

With using of known complex derivation symbols 

∂η∂+∂ξ∂=γ∂∂∂η∂−∂ξ∂=∂γ∂ /i//2,/i//2 , 

we exchange each pair from (2.57)-(2.60) with one complex equation: 
ee22mee /)E(ipHpjE)(lnE)(lnE2 κ′κ−ωκ−=′κ−′κ+′ ζζζγγγ , (2.61) 

mm22emm /)H(ipEpjH)(lnH)(lnH2 κ′κ−ωκ=′κ−′κ+′ ζζζγγγ , (2.62) 

γζζ ′=ωκ+′ )E(i2HijE m , (2.63) 

γζζ ′=ωκ−′ )H(i2EijH e . (2.64) 

Consequently, the scalarization problem is recognized as problem of Maxwell's 

equations system (2.61)-(2.64) transformation in separate equations for four 
intensities calculating components HE,,H,E ζζ  with account, if it will be need, 

the boundary conditions. It is possible to recognize a problem variant when it is 
sufficient to have the separate equations for ζζ H,E , assuming presence of 

function Eζ , as known solution, in the equation for E . 

2.5.3. Let us, at first, make the equations (2.61)-(2.64) research for T-waves 
when 0H,0E == ζζ . From (2.61),(2.62) we have the system 

0H)(lnH)(lnH2,0E)(lnE)(lnE2 mmee =′κ−′κ+′=′κ−′κ+′ γγγγγγ , (2.65) 

and from (2.63),(2.64)we obtain: 

0EijH,0HijE em =ωκ−′=ωκ+′ ζζ . (2.66) 

The general expressions (2.56) will be used after analysis of a simpler ones. 

a). At first, they have to be the constants: C0
m

C0
e h,h ζζ µ=κε=κ . With these 

values the equations (2.65),(2.66) solutions are described with the help of formula 

)(WeHiZE Cohjk

0 γ== ζ− ζ  which determines all six classes of T-waves in 

homogeneous and inhomogeneous isoimpedance media, when ζζ=µ=ε h/h Crr . 
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b). Let us consider auxiliary functions me ,κκ  which are depended from the 

longitudinal coordinate ζ  only: )(),( mmee ζκ=κζκ=κ . The electrical and 

magnetic fields dependence from transverse coordinates will be same since 

)](W)(M)[(Z)(L)(WH)(iZE γζζ=ζγ=ζ= , (2.67) 

where Hi/E)(M/)(LZ =ζζ=  performs a role of medium impedance for T-

wave. Substitution of (2.67) in (2.66) leads to two differential equations of second 

order: 

0M)/M(,0L)/L( m2ee2m =κω+′κ′=κω+′κ′ ζζζζ . (2.68) 

These equations will have varying coefficients if at least one of functions κ κe m,  

is not constant. Note that in literature [46,47] waves in the inhomogeneous media 

are described with Cartesian or spherical coordinates only, when z=ζ  or r=ζ , 

and a medium has only inhomogeneous  permittivity 0
e

r /)( εζκ=ε . 

Especially we consider the isoimpedance medium with parameters 

ζζ µζκ=εζκ=µ=ε h/)(h/)( 0
m

0
e

rr . (2.69) 

The relations (2.69) are more general than equations (2.6)-(2.9). Hereby from 

system (2.68) we obtain one equation: 

0L]/)([)/L( 0
e

0
2e =εζκµω+′κ′ ζζ . (2.70) 

According to (2.70), a dependence on the longitudinal coordinate ζ  for new T-

waves in the isoimpedance medium may be taken arbitrarily differing from 
function )hjkexp( C0 ζ− ζ . It is necessary to give desired function  )(LL ζ=  for 

(2.67), and than we consider equation (2.70) as nonlinear differential equation of 

first order for )(e ζκ  which will be used in (2.69) during binary material 

realization. Phase fronts C=ζ  ( Fig.2.1,2.2 ) are caused by previous relations 

)z,y,x(ζ=ζ  but field intensities are non- exponential functions of variable ζ . 

c) Let the relations ),(ee ηξκ=κ , 2
C00

me hζµε=κκ  take place and medium 

parameters are equal:  

),,(h),(/h),,,(h/),( e2
C0r0

e
r ζηξηξκε=µζηξεηξκ=ε ζζζ .  (2.71) 

The fields intensities are obtaining in accordance with formula 
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H),(iZ),(WeE Co hjk ηξ=γγ= ζ− ζ , (2.72) 

where impedance Z depends on transverse coordinates ξ η,  only: 

rr000C
me

00C /Zh/),(/hZ εµ=µεκ=ηξκµε= ζζ . (2.73) 

The complex potential  ),(WW γγ=  is generalized analytical function of two 

complex variables γγ,  satisfying the equation 

0W)(lnW)(lnW2 ee =′κ−′κ+′ γγγ . (2.74) 

Therefore, one taken real variable function ),(ee ηξκ=κ  determines according to 

(2.71) binary medium parameters. Appropriate T-wave is described with formulae 

(2.72), (2.74) having according to (2.73) the transverse-inhomogeneous impedance. 

d). The great variety of T-waves variants is possible in medium which has the 

parameters with arbitration for two functions: 

βαε=µεηξβζα=ε ζζζ h/h,h/),()( 2
C0r0r . For intensities H,E  and impedance 

Z we have relationships  

 H),(iZ),(W)(LE ηξ=γγζ= , ),(/hZ 00C ηξβµε= ζ , where  

 ]d)(hjkexp[L
0

C0 ζζα−= ∫
ζ

ζ  and generalized analytical function ),(W γγ  is 

solution of the equation 0W)(lnW)(lnW2 =′β−′β+′ γγγ . 

2.5.4. Let us pass to consideration of E,H-waves in the infinite media starting 

from known results. For the homogeneous medium 1rr =µ=ε , and application of 

arbitrary cylinder or conical coordinates (PBI,SBI) is accompanied with 

independance me ,κκ  from ηξ, . The equations (2.61)-(2.64) became essentially 

simpler, and we have traditional technique of E,H,EH-waves investigation. Note 
that a using of common relation ),(phh ηξ= ζ  for all six coordinate systems 

classes are corresponded the choice of the relation rh),r/rln( 0 ==ζ ζ  in the conical 

coordinates. 

Abraham's potentials [64] are appropriated to fields, non-depending on 

coordinate ζ , and to coordinate systems, all Lame's coefficients of which also 

don't depend on ζ . Last condition take place for cylinder coordinates (PBI) and 
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coordinates of rotation (PBII) only. Deriving (2.61), (2.62) by γ  and substituting 

(2.63) in (2.62) and (2.64) in (2.61) we have separate equations for HE, : 

0Eh}h/]E)h(E)h{[(2]h/E[4 22 =µεω+′εµ′ε−′ε+′µ′ ζγζγζγζγζγ  (2.75) 

0Hh}h/]H)h(H)h{[(2]h/H[4 22 =µεω+′εµ′µ−′µ+′ε′ ζγζγζγζγζγ . (2.76) 

The equations (2.75), (2.76) generalize Abraham's results for fields in the 

transverse-inhomogeneous media with ),(),,( ηξµ=µηξε=ε . 

New variants of scalarization problem solutions take place if to use the 

formulae (2.56) when are valid the relation 

consth2
C

me ==ββ ζ . (2.77) 

Deriving (2.63) and taking into account (2.61),(2.62),(2.77) we have : 

+′α′α+ααω+′′ ζζζζζγγζ ]/)E[(pEph)E(4 ee222
C

em2  

0)E()(ln)E()(ln ee =′′β+′′β+ ηζηξζξ . (2.78) 

Similarly, from (2.64),(2.61),(2.62),(2.77) we have equation for H : 

+′α′α+ααω+′′ ζζζζζγγζ ]/)H[(pHph)H(4 mm222
C

em2
 

0)H()(ln)H()(ln mm =′′β+′′β+ ηζηξζξ . (2.79) 

Additional analysis shows that the equations (2.78),(2.79) are justified not only 

with fulfillment of condition (2.77) but and from relations: 

0H,0E),(fme ==ξ=ββ ηη . 

The scalarization procedure variants variety according to shown formulae is 

very great. At first, it is caused by possibility of application of any variants from 

six PB,SB coordinate systems, i.e. of six infinite collections of variables ζηξ ,, . At 

second, beside fields analysis for homogeneous media, one can to research fields in 

the inhomogeneous media having the representation (2.54) for parameters which by 

using of appropriate PB,SB systems are the following:  

)y,x(/)z(),y,x()z(.PBI me βα=µβα=ε , 

)z,(/h)(,/h)z,()(.PBII C
m

C
e ρρβϕα=µρρβϕα=ε ζζ , 

),,(r/h)r(,r/),(h)r(.SBI C
m

C
e ϕθβα=µϕθβα=ε ζζ  

)],,()([h),()(.SBIVSBII C
e ηξσ+ζϑηξβζα=ε− ζ  
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),,(/)],()([h)( C
m ηξβηξσ+ζϑζα=µ ζ  (2.80) 

where σϑ,  - the concrete functions [56]. 

The equations for transverse components, in contrast to (2.78),(2.79), don't become 

in general case the separate ones. For example, for transverse components we have: 

+′′β−′β+′α′αβ+′′β γγγζζγγ ]p/)EE[(2)/E()p/E(4 2ээ““э2э  

},/])E([]/)E[({i2Eh эээ“э““э22
C α′′αβ−′α′βα=ακω+ γζζζγζζ  (2.81) 

where in right part the longitudinal component is present as known solution of 

equation (2.78). But if 

00
me

C
me ,h µε=αα=β=β ζ , (2.82) 

the equations for HE,  also will be separate ones. Note that to earlier investigated 

circular waves the equations (2.82) are corresponded when 0
m

0
e , µ=αε=α . 

Let us see the most important cases when all calculating intensities are 

faxtorizied functions relatively to longitudinal ζ and transverse ξ η,  coordinates. 

The representation  

),(T)(LH),,(T)(LE ““ ηξζ=ηξζ= ζζζζζζ  (2.83) 

for longitudinal components is allowed by equations (2.78),(2.79). Substitution 

(2.83) in (2.61)-(2.64) gives the factorization for transverse components: 

),,(T)(LH),,(T)(LE ““ ηξζ=ηξζ=  

if functions me ,αα  are interrelated: 

.)()( 00
me µε=ζαζα  (2.84) 

With account (2.84) one can to obtain from (2.63),(2.64) a system of algebraic 

equations for MT,T  finding if functions MT,T ζζ  are known. Similarly, from 

(2.61),(2.62) we have system of algebraic equations for finding of MT,T ζζ , if 

functions MT,T  are known. Hence, there are possible to use two algorithm of field 

vectors components finding: longitudinal-transverse sequence and transverse-

longitudinal sequence. According to first of them initially the longitudinal 

components must be find as a solution of boundary problem for (2.78),(2.79), and 
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then from (2.63),(2.64) we have transverse components. According to second 

algorithm it is necessary to find transverse components as solutions of equations 

0Eh)/E()p/E(4 2
C00

2mm2 =µεω+′α′α+′′ ζζζγγ , (2.85) 

0Hh)/H()p/H(4 2
C00

2ee2 =µεω+′α′α+′′ ζζζγγ , (2.86) 

which are coming from (2.81),(2.82), and to obtain longitudinal components 

E Hζ ζ,  from (2.61),(2.62). First algorithm action area is more broad because it is 

accompanied with conditions (2.77),(2.84) which give more functions me ,ββ  than 

conditions (2.82), working for second algorithm. It is necessary to take into 

account boundary conditions equations. 

2.5.6. We are going to account of boundary conditions: for surface of two 

magnetodielectrics separation 

 0)HH(n,0)EE(n =−×=−× −+−+ rr
, (2.87) 

or for perfect conductor surface 

rn E× = 0. (2.88) 

It is necessary to consider as boundary C=ζ ,  which is plane or sphere, so six 

infinite collections of surfaces C=ξ . In problem with perfect conductor the 

boundary condition (2.87) for C=ζ  is 0E =Γ , which according to (2.57) is 

accompanied with equation 0H =Γζ . Besides, we have from (2.64) 0H =′ζ  and 

from (2.61) also 0)E( e =′α ζζ . Each of equations (2.78),(2.79),(2.85),(2.86) will 

have own boundary condition. 

For conjunction problem from conditions (2.87) and Maxwell's equations we 

have also separate boundary continuation equations as the relations: 
--++--++-+-+ EE,HH,HH,EE ζζζζ ε=εµ=µ== . For shown problems both 

algorithms of fields analysis are equal.  

Let us come to great variety of problems with boundaries ξ = C from PB,SB 

coordinate systems. For perfect conductor from (2.88),(2.57)-(2.60) we have:  

0)H(,0E;0)E(,0E,0)H(,0H e =′==′β==′= ξζζξξηξηξ . 
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The longitudinal-transverse sequence algorithm of field analysis is more used 

in comparison with the transverse-longitudinal one only due to weak application of 

complex spatial intensities and generalized analytical variables γ γ,  functions 

technique. The conjunction problem investigation shows that the transverse-

longitudinal sequence algorithm is more convenient than second one because 

transverse components are accompanied with independent boundary conditions but 

boundary equations for longitudinal components contain else transverse 

components. 
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CHAPTER 3. REALIZATION AND APPLICATION OF THE 

ISOIMPEDANCE MATERIALS 

3.1. Metal-air realization of magnetodielectrics 

3.1.1. The medium permittivity and permeability may be determined by means 

of two methods: a) quasi static, b) wave. According to first of them, one finds a 

matter polarization P in the electrical field and a magnetizing M in the magnetic 

field, after all we have: 

0r E/P1 ε+=ε  , 0r H/M1 µ+=µ . (3.1) 

According to second method, it is assumed that wave is propagating in the 

medium along coordinate ζ  , having for intensities transverse components the 

representations: 
)t(j

m e),(EE βζ−ω
⊥ ηξ= , )t(j1

cm eZEH βζ−ω−
⊥ = ,   (3.2) 

where β- longitudinal wave number, ηξ, - transverse coordinates, CZ - wave 

impedance of media for this wave. Particularly, in the homogeneous medium a 

wave is running along straight-line z. Relations 

000c /ZZ εµ== , 000 /1k// εµ=ω=βω ,   (3.3) 

acting for field in vacuum, may be remained and for field (3.2) in considering 

medium so that relations between parameters are given: 

cZ/ =εµ ,  ωβ=µε / .   (3.4) 

From (3.2)-(3.4) we obtain the calculating formulae: 

,z/n cr =ε    cr nz=µ ,   (3.5) 

where refraction coefficient n and ratio impedance zcwill be known: 

ωβ= /cn 0 , 0c ZH/Ez ⊥⊥= ,  (3.6) 

 if to find the field (3.2). 

In special cases only, the influence on medium with the help of static fields or 

of wave (3.2) may give a coincidence of results, has been obtained with the help of 

(3.1) and (3.5). 

In accordance with two methods of measurement, there are two techniques of 

artificial creation of magnetodielectrics (MD) with 1,1 rr ≠µ≠ε . The First of 
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them is based on representation about electrical and magnetic dipoles which may 

be realized as discrete conducting elements (small plates, loops) [37-43,61]. The 

second method deals with the investigation of waves guiding by metal strips, 

waveguides and so on. The quasi static and wave techniques of media realization 

we shall consider further separately with regard of the media classification given in 

the Table 1. 

In rows 5,6 as homogeneous so inhomogeneous media are assumed to be the 

isoimpedance ones, i.e. )z,y,x()z,y,x( rr µ=ε . The rows 7,8 are correspond to media 

where wave may to have constant velocity [5], when 1rr =µε  . 

Table 1. 

№ Medium rε  rµ  n cz  

1 Decelerating dielectric >1 1 >1 <1 
2 Accelerating dielectric <1 1 <1 >1 
3 Accelerating magnetic 1 <1 <1 <1 
4 Decelerating magnetic 1 >1 >1 >1 
5 Decelerating MD >1 >1 >1 1 
6 Accelerating MD <1 <1 <1 1 
7 MD with small impedance >1 <1 1 <1 
8 MD with great impedance <1 >1 1 >1 

 

The interest to metal-air MD realization based on the property of the good 

conducting metals having the electrical current without delay in total frequency 

band from beginning to 1510  Hz which contains visible light area also. It takes 

place due to unique small mass of electron and its mobility in metal. 

3.1.2. Let us consider the quasi static technique of media realizations for cases 

given in the Table 1.  

1. Decelerating dielectric )1,1( rr =µ>ε  realization with the help of small 

dimension metal bodies (spheres, rods, disks and so on) are known else from 

twenties years. The results of calculations rε , when different configuration 

elements have been used, are represented in [37,61]. In some cases it is necessary 

to take into account the effect of alternating magnetic field action which leads to 

reduction of equivalent permeability )1( r <µ . 
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2. The quasi static method may to used for accelerating dielectric realization 

)1,1( rr =µ<ε  also. It is necessary to describe this procedure in detail because the 

appropriate information in literature is absent. Let there be given electrically short 

metal rod with length λ<<l   is placed in the electrical field of capacitor 

(Fig.3.1,a). 

 
              I0/2                     I0                  I0/2                                      I                                                   I3 
                                                                                                                                                                                             
2C2 
 
 
                                                                                          C0      I0                          I2             C2           C0       I0  
          E 
                                                                                                                                                                                     L 
 
                                                                                                                                                                      2C2 
 
 
 
 
 

                                  а)                                                b)                                           c) 
 
 
 

Fig. 3.1 

The current through capacitor consist of the current UCjI 00 ω= , non- 

depending from presence or absence of rod, and  the current UCjI 22 ω=  which is 

equal to displacement current in area of rod position ( Fig.3.1,b ). When the rod 

was absent we have instead of 2I  current UCjI 11 ω=  where  21 CC < . 

Therefore, application of rod is equal to the increasing of rε . These consideration 

else are correspond to above mentioned case of decelerating dielectric. 

Let us divide the rod at two parts and inset between them lumped inductance L 

( Fig.3.1,c ). Instead of current 2I  the current  )/1(UCjI 2
0

2
23 ωω−ω=   will 

flow, where 20 LC/1=ω . The current 3I  remains capacitive one on frequencies 

0ω<ω  but will be inductance one if inequality 0ω>ω  is provided. Hence for full 

current of capacitor by 0ω>ω  we shall have difference 30 II − .Therefore, 

accelerating dielectric creation consist of application of great number of small rods 
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with additional inductances L which for 0ω>ω  provide for equivalent 

permittivity an implementation of inequality 1r <ε , i.e. 1v/cn o <= . 

3. The accelerating magnetic must to have 1r =ε , 1r <µ , that is provided with 

help of small short-circuited turns from perfect conducting metal.  According to 

Faraday’s law, induced emf causes a current which creates magnetic field with 

opposite direction relatively to primary magnetic field.  

4. The decelerating magnetic )1,1( rr =ε>µ  may be created with the help 

small turns, each of them is loaded with lumped capacity C. The resonance 

frequency of this loop LC/10 =ω  is used in condition 0ω>ω  when current in 

the loop corresponds to above shown case of the accelerating magnetic. If, on the 

contrary, to provide  0ω<ω , the current in loop will change its direction at 

opposite one, and magnetic will become decelerating one. 

 5. Decelerating magnetodielectric )1,1( rr >µ>ε  may be created by means of 

combination of metal elements which have been described above for decelerating 

dielectric and decelerating magnetic realizations (variants 1 and 4). It is necessary 

to take into account earlier shown condition 0ω<ω . 

6. Accelerating magnetodielectric )1,1( rr <µ<ε  is made with application of 

elements corresponding to variants 2,3.  

7,8. Magnetodielectric with small or great impedance will be realized if to use 

the combinations of elements 1,3 or 2,4 appropriately. 

3.1.3. Let us come to consideration of wave method of magnetodielectrics 

realization. 

1. It is known that the decelerating dielectric realization is possible with using 

of unlimited length metal strips which have been placed normally to wave moving 

direction and to vector E . Besides approximate formulae [37,61] there are known 

[62] the rigorous analysis results of the electromagnetic wave diffraction by array 

from parallel strips. The assumption µr = 1 is justify if in accordance with (3.5) 

the relation n/1zc =  took place. 
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2. The accelerating dielectric is formed from metal parallel plates along which a 

wave is running as guided H-wave in the waveguide [37,61]. Herein 
2

cro )/(1/cv λλ−= , ,)/(1/ZZ 2
cr0

H
c λλ−=  that gives from 

(3.5),(3.6) values 1)/(1,1 2
crrr <λλ−=ε=µ . Besides everything, it is important 

to maintain the unimode regime in waveguide. 

3. If in above mentioned systems of plates to excite currents corresponding to 

E-wave in waveguide, we have accelerating magnetic. Really, for E-wave 

equations are:  ,)/(1ZZ,)/(1/cv 2
cr0

E
c

2
cro λλ−=λλ−=  i.e. czn = , that 

in accordance with (3.5),(3.6) gives 1)/(1,1 2
crrr <λλ−=µ=ε . 

4. For creation of the decelerating magnetic it is necessary to add to the considered 

plates system the transverse ridges creating the multi-ridge and multi-waveguide 

arrays. With proper conditions implementation, knowing for ridge impedance 

surface, the decelerating surface E-wave is satisfied the relations 

ψ=<ψψ= /1z,1,cv co  that according to (3.5),(3.6) yield to values  

1/1,1 2
rr >ψ=µ=ε . Let us to note that in the book [63] the results of ridge 

waveguide analysis were transferred incorrectly on problem of accelerating 

dielectric realization. It is interesting that in case of alone impedance plane with 

small distance l between ridges (l<< λ ) we have for decelerating coefficient 

)/d2cos( λπ=ψ , where d- height of infinite thin ridge [64].  

5,6. The decelerating isoimpedance magnetodielectric )1z,1n( c =>  may be 

obtained with the help of composition of constructions which have been described 

for variants 1,4. Correspondingly, the accelerating isoimpedance magnetodielectric  

)1z,1n( c =<  may be fabricated with using of the results from items 2,3. 

7,8. Formally for creation of the magnetodielectric with small impedance 

)1z( c <  with constancy of wave velocity (n=1) it is necessary to make the 

composition of structures have been described above for variants 1,3. If we want to 

make the magnetodielectric with great impedance )1n,1z( c => , it is possible to 

use the variants 2,4.  
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3.2. Refraction without reflection 

 

3.2.1. The isoimpedance bodies application allows to have the electromagnetic 

wave refraction without scattering. This declaration justification will be given in 

present paragraph. We start from traditional methods of reflection waves reduction. 

Theoretically the absence of reflection take place if plane wave is incident on plane 

boundary normally and if impedances of two media are equal )ZZ( 21 = . For 

decline wave incidence it may be only for determined incident angle-Bruster's one. 

It is well known in practice the method of boundary transparent method with the 

help of matching one/fourth wavelength layer. The great number of works is 

devoted to radioabsorbing coatings application [39,65,66]. Each of shown 

techniques has the proper limitations, for example, impossibility of practical 

realization of plane infinite boundary. Nowadays, besides "black" body creation 

idea, one develops the principles of transparent body fabrication which take 

participation in the electromagnetic process without effects of absorption and 

reflection. It was known [67,68] that it is possible to do only for selected directions 

due to electromagnetic traps from semitransparent screens. 

At 1992 the author discovered the possibility to make scatterer as transparent 

body with the help of application of energy circular transfer due to circular waves 

which had been found earlier [6-8,69].  

Let us consider normal incidence of plane wave with intensities  
xjk1

000
cosjk

00
xjk

00
ooo eZEyH,eEzeEzE −−ϕρ−− −=== rrr

   (3.7) 

on circular isoimpedance cylinder with axis 0z
r

 and radius a=ρ , having inside the 

inhomogeneous isoimpedance magnetodielectric with parameters according to 

(2.6). The solution of the Maxwell's equations for inner area is equal to sum of H-

waves (relatively to ϕ=ζ ): 

),(fe)j(/aEE n
jn

n

n
0z ρ−ρ= ϕ

∞

−∞=
∑  
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),(fe)j(n
a

E
H n

jn

n

n

0

0 ρ−
ρϖµ

−= ϕ
∞

−∞=
ρ ∑  

∑
∞

−∞=

ϕ+−
ϕ ρψ−ρ=

n
n

jn1n1
00 ).(e)j(/aZEH  (3.8) 

From dependence of 22 Nn <  or 22 Nn > , where 

,08,04/a,04/)1a/a(N o
2
o

22 λ≈πλ=>−=  (3.9) 

functions )(),(f nn ρψρ  according to formula (2.42) have the representation: 

++ρ=ρ − )ak(J
2

1
[b)

a
lnbcos()ak(J)(f on

1
nn0nn  

,nNb),
a

lnbsin()]ak(aJk 22
nn0n0 −=ρ′+  

−−ρ′=ρψ −− 2
0

21
0

1
nn0nn ka()ak[(b)

a
lnbcos()ak(J)(  

);
a

lnbsin()]ak(J
2

1
)ak(J)n n0n0n

2 ρ′+−  

+β+
ρ

+ρ= −ββ )ak(J
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1
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()
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)[(ak(J{
2
1

f 0n
1

n0nn
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n0n0
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ρ
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1
nn
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a

()
a

)][(ak(J
2

1
)ak(J)nka(
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1
[ nn

0n0n
22

0
2

0

1
n

ββ−

ρ
−ρ′+−β−  

In special case of number transformation, when according to (3.9) 

0NN =  is integer number, summonds of series (3.8) will contain the functions: 

),a/ln()Jak2/J(Jf 0N00N0N0N ρ′++=  

.
a

ln]J
2

1
J)nka(

ak

1
[J 0N0N

22
0

2

0
0N0N

ρ′+−−′=ψ    (3.11) 

There are used ordinary denotations for Bessel's function of first kind in 

(3.10),(3.11). 



 42

 For boundary ρ = a we have according to (2.6) 00 , µ=µε=ε  that provide 

from (3.10),(3.11) )ak(J)(),ak(J)(f 0nn0nn ′=ρψ=ρ , 

.eE)ak(Je)j(EE cosajk
00n

n

jnn
0z

o ϕ−
∞

−∞=

ϕ =−= ∑    (3.12) 

In accordance with (3.12), where known expansion into Bessel's functions was 

used, on boundary we observe a coincidence of expression (3.12) with 

representation for primary field. Therefore the integration of formulas (3.8) and 

(3.7) takes place in the scattering field absence. 

In writing formulae (3.8)-(3.12) the boundary conditions of ϕH,Ez  

continuation were accounted only to cylinder surface without demand of field finite 

values for axis z that is corresponded to situation with elliptic equation degradation 

[70]. Namely, the expressions (3.8) were obtained as solution of equation for 
azimuth component :UH =ρ ϕ  

.0UakUU 22
0

2 =+′′+′′ρ ϕρ    (3.13) 

 The mathematician M.Keldish has shown (see [70]) that for 0ak 22
0 ≥  it is 

necessary to free the degenerating at 0→ρ  equation (3.13) from boundary 

condition on boundary 0=ρ  because solution and its derivation may to have 

infinite magnitude on line of degradation. 

If to change of places in (3.7) for unit vectors 00 y,z
rr

 nearby the intensities 

H,E , we come to problem with vector H  which is parallel to axis z. With using 

of the known electrodynamical duality principle it is not difficult to have analogous 
expressions for ϕρ E,E,Hz , according to (3.8),(3.10). From this it follows that the 

possibility of cylinder transparent (without scattering field) is shown with arbitrary 

polarization of normally incident plane wave. The case of oblique incidence of 

wave also is available to analysis if to use the recommendation from [71]. 

Let us consider the field investigation on cylinder axis. According to (3.8) the 

field for 0→ρ  has a singularity which is accompanied, with regard of (2.6), also 

by singularities of functions describing medium parameters. The situation, when in 
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the points of some line or part of plane [44] field intensities stream to infinite, takes 

place due to the medium inhomogeneity. 

The electromagnetic field with singularity on axis 0=ρ  is observed also for 

scattering of plane wave (3.7) by infinite thin but perfect conducting cylinder    

ρ ρ= 0. Let us, at first, do the transition 0ρ→ρ  in well known (see, for 

example, [72]) formulae: 

)]k(H/)k(J)k(H)k(J[e)j(EE 00
)2(

n00n0
)2(

n
n

0n
jnn

0z ρρρ−ρ−= ∑
∞

−∞=

ϕ ,

ρϖµ′−=′= ϕρρϕ 0z0kz j/)E(H,jZ/)E(H
o

, (3.14) 

i.e. we dispose the observation point on cylinder surface. From (3.14)-(3.16) we 

obtain: 

)k(H/e)j()kZ(E2H 00
)2(

n
jn

n

n1
0000 ρ−ρπ= ϕ

∞

−∞=

−
ϕ ∑ , 

,0)(H,0)(E 00z =ρ=ρ ρ   (3.15) 

where took into account the relationship: 

00n
)2(

n
)2(

nn k/j2JHHJ ρπ=−′ ′ .    (3.16) 

Now in (3.15) we use for small 1k 00 <<ρ=ξ  the representations: 

n

n

n

n
)2(

n
)2(

0

2)!1n(
j

2!n
)(H,

78,1

2
ln

2
j1)(H

πξ
−+ξ=ξ

ξπ
+=ξ , 

)jnexp()(H)(H )2(
n

)2(
n π−ξ=ξ−    (3.17) 

and we have according (3.15)-(3.17) current density 

000z j/EHJ ρωµ== ϕ ,  (3.18) 

hence, the current is ∞≠ωµπ= 00 j/E2I . If in the problem about infinite thin 

wire according to (3.18) intensity Hϕ  has a singularity as ρ/1 , for inhomogeneous 

isoimpedance cylinder nearby axis 0=ρ  we have ρρψ=ϕ /)(H , and 

∞≠ρψ
→ρ

)(lim
0

 for 22 Nn <  and ∞=ρψ
→ρ

)(lim
0

 for 2
0

2 Nn ≥ . Given result 

depend of electrical size ak0  and of possibility (or impossibility) to remain the 

components with 22 Nn <  in series (3.8). 
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The question about the field behavior nearby cylinder axis is close to 

considerations about energy losses increasing with the increasing of intensities 

when 0→ρ . As it is noted in [44], for real inhomogeneous media due to losses 

presence the field intensity has a finite value instead of theoretical infinity. 

3.2.2. It’s possible to give the view for series (3.8) which is convenient for 

analysis if to consider a field nearby surface in the inner nearsurface layer of 

cylinder body. Assuming )a/ln(ρ  as small value, we have according to (3.10): 

)a/ln()]ak(Jak2/)ak(J[)ak(Jf 0n00n0nn ρ′++= ,  (3.19) 

a
ln)]ak(J

2

1
)ak(J

ak

nka
[)ak(J 0n0n

0

22
0

2

0nn

ρ′+−−′=ψ .   (3.20) 

Besides relation (3.12) there are justified also the equations: 
ϕ−ϕ ϕ−=′−∑ cosajk

0n
jnn 0ecosj)ak(Je)j( , 

ϕ−ϕ ϕ=−∑ cosajk
00n

jnn 0esinak)ak(Jne)j( .  (3.21) 

With regard of (3.19)-(3.21) we have for electrical and magnetic fields intensities:  

)
a

lncosajk1(e/aEE 0
cosajk

0
o

ρϕ−ρ= ϕ− ;   (3.22) 

−ϕ−=ϕ−=ρ
00 Z

cosE
H,

Z

sinE
H  

a/ln)
ak4

1
cosak(e

Z

aE
j

0

2
0

cosajk

0

0 0 ρ−ϕ
ρ

− ϕ− ,   (3.23) 

where the condition of small value )a/ln(ρ  was used. In so doing, the 

Cartesian components of magnetic field intensity vector are equal: 

×
ρ

−−=ϕ+ϕ= ϕ−
ϕρ

cosjak

0

0

0
y

oe
Z
aE

Z
E

cosHsinHH  

)ak/1cosak)(a/ln(cos 0
2

0 −ϕρϕ× ,  (3.24) 

−ϕ
ρ

=ϕ−ϕ= ϕρ
2

0
0

0
x cosak(

Z

ajE
sinHcosHH  

)a/ln(sine)ak/1 cosajk
0

o ρϕ− ϕ− .  (3.25) 
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With the help of (3.22)-(3.25), we find the Cartesian components of Pointing's 

vector average magnitudes: 

,2/)HEHE(,2/)HEHE( xiixrryyiiyrrx +=Π+−=Π    (3.26) 

where indexes r,i are corresponded to real and imaginary parts. 

After substitution of (3.22), (3.24), (3.25) in (3.26) and simple transformations, we 

have the characteristics of longitudinal and transverse energy flows relatively to the 

plane wave incidence direction: 

+−ϕρϕ
ρ

−=Π )
ak4

1
(cos

a
lncos

Z

akE
22

0

222

0

32
0

2
0

x  

)
a

lncosak1(
Z2

aE 2222
0

0

2
0 ρϕ+
ρ

+ ,  (3.27) 

)
ak4

1
(cos

a
ln2sin

Z

akE
22

0

22

0

32
0

2
0

y −ϕρϕ
ρ

−=Π .  (3.28) 

In accordance with formulae (3.27), the input (output) through boundary a=ρ  

energy flow is corresponded to Pointing's vector in incident plane wave 

0
2
0ччx Z2/E=Π . Essentially that continiousity on boundary takes place as for 

чxΠ  so for 0yy =Π=Π −+ . It means that Pointing's vector lines inside cylinder 

start to be curvilinear only with coming away boundary that is caused by increasing 
of function ),(y ϕρΠ  values with comparison of function ),(x ϕρΠ  ones. For 

electrically great cylinder in nearsurface layer we have 

ϕϕρρ−≈Π − 221
0

32
0

2
0y cos2sin)a/(ln)Z(akE ,   (3.29) 

a
lncos

Z

akE
)

a
lncosak1(

Z2

aE 24

0

32
0

2
02222

0
0

2
0

чx

ρϕ
ρ

−ρ+
ρ

≈Π . (3.30) 

Relations (3.29), (3.30) are in action for all ϕ with excluding of tangential points 

2/3,2/ π=ϕπ=ϕ .  It is interesting that not only function (3.29) but and 

function (3.30) may have the negative values. In last case in proper points it is 

possible to have a motion of energy opposite to 0x
r

. 
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3.2.3. The practical interest exists to the problem of isoimpedance cylinder 

excitement with current filament. Let a primary field is created with uniphase 

electrical current I  filament coming through points b,0 =ρϕ=ϕ . It is known that  

)bk(H)k(Je)4/I(zE 0
n

)2(
n0n

)(jn
00

0∑
∞

−∞=

ϕ−ϕ− ρωµ−= r . (3.31) 

The relationship (3.31) generalizes the representations (3.7),(3.12) for plane 

wave, transforming in latters with account of Hankel's function asymptotic 

)]4/2/nbk(jexp[bk/2)bk(H 000
)2(

n π+π+−π≈ ,   (3.32) 

which take place if 1bk0 >> . Therefore, it is sufficient to withdraw a filament on 

electrically great distance from axis z in order to use for primary field for all 

ρ < b the formulae (3.7),(3.12), where 

4/jbjk

0

0
0

oe
bk22

I
E π+−

π
ωµ−= . 

 Therefore, during asymptotic (3.32) action the isoimpedance cylinder is also 

non-reflecting body for field of electrical current filament. Essentially that 

condition 1/b2 >>λπ  is related only to distance between filament and cylinder 

axis but not between filament and cylinder surface. 

3.2.4. Let us transfer obtained result about refraction without reflection also on 

acoustic problems. At first, we consider acoustic non-reflecting cylinder. Sound 

field equations in the inhomogeneous liquid or gas medium with assuming of small 

longitudinal vibrations are [46]: 

0gradpmv,0vdivcmp 1
vt

2
vt =+′=+′ −rr

, 

where p- sound pressure, v
r

 - sound wave velocity, vm  - medium density, c - 

sound velocity: κ= vm/1c , and κ  is ratio compression ( 1−κ  - medium ratio 

elasticity ). Transition to complex amplitudes of harmonic fields gives: 

0gradpmvj,0vdivpj m
1

vmm
1

m =+ω=κ+ω −− . (3.33) 

Similarly with (2.6) we use for the inhomogeneous cylinder parameters also 

inverse proportional dependencies from radius ρ : 

ρ=ρκ=κ /amm,/a 0v0 ,   (3.34) 
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 where 00 m,κ  - constants corresponding to cylinder body. Substituting (3.34) in 

(3.33), we obtain for sound pressure the equation 

.0pka
pp

)
p

( m
2
0

2m
2
m

2
m =+

∂ρ
∂ρ+

∂ϕ
∂+

∂ρ
∂ρ

∂ρ
∂ρ    (3.35) 

The equation (3.35) has the same view that the equation for zE  in 

electrodynamical problem, therefore according to (3.8),(3.11) we have: 

n
jn

n

n
mom fe)j(/app ϕ

∞

−∞=
∑ −ρ= . (3.36) 

The incident plane wave with pressure )xjkexp(pp 0mom −=  and inner field 

(3.36) are satisfied bothly on boundary a=ρ  the continuos conditions as for 

pressure so for the normal component of velocity in sound wave ρmv . These 

conditions are typical for boundary of two media separation. Therefore, non-

absorbing and non-reflecting cylinder realization consist of medium realization 

with parameters (3.34). 

 

Let us pass to problem about non-reflecting sphere. One see an incidence of 

plane acoustic wave )zjkexp(pp 0mom −=  on sphere with radius r=a and ratio 

compression and density are according to the relations: 

.r/amm,r/a 22
0v

22
0 =κ=κ     (3.37) 

In spherical coordinates ϕθ,,r  the equations system (3.33) (for case of 

independence from ϕ ) are represented by equations 

0])v(sin
sinr

1
)vr(

r

1
[

1
pj mrmr

2
2m =′θ

θ
+′

κ
+ω θθ , 

.0prmvj,0pmvj m
11

vmmr
1

vmr =′+ω=′+ω θ
−−

θ
−  

After substitution of (3.37) we have the second order equation: 

0pkasin/)p(sinr)pr( m
2
0

4
m

2
rmr

4 =+θ′′θ+′′ θθ . (3.38) 

The equation (3.38) solution is 

)],
r

ak
(JC)
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ak
(JB[P)1n2()j(rp
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0

n

2
0

0n
nn

n2/3
m ν−ν

∞

=

− ++−= ∑  (3.39) 

where )(cosPn θ  - the Legendre's function, J±ν -  the Bessel's function, 
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4/9n2 +=ν . In sphere origin both Bessel's functions have finite magnitude 

)0)(J( =∞ν± . Using the primary plane wave expansion 

),rk(g)(cosP)1n2()j(p 0n
0n

n
n•

m θ+−=∑
∞

=
 (3.40) 

where )rk(Jrk2/)rk(g 02/1n00n +π= , 

we put on (3.39),(3.40) two boundary conditions for r=a: 

r
•
mrm

•
mm )p()p(,pp ′=′= . (3.41) 

It was taken into account in (3.41) that due to (3.37) on boundary 0v mm = . 

Sphere origin, similarly to cylinder axis, must be free from boundary condition 

putting. Really, according (3.39) for 0r →  a field has singularity of type 1/r 

because r~)r/ak(J 2
0ν± . 

 

The coefficients nn C,B  will be found from relations (3.39)-(3.41). Hence, 

during the plane acoustic wave (3.90) incidence on the inhomogeneous 

isoimpedance sphere with parameters (3.37) the reflecting wave is absent, and 

inner field of sphere is specified by formula (3.29). 

 3.2.5. It is necessary to account that energy loss presence only impairs the non-

scattering body properties. In book [73] the authors suggest to determine a "black" 

body with condition of power loss maximum that may be observed only with 

scattering field presence. Therefore, above considered isoimpedance bodies are 

correctly a non-scattering ones only if power loss is absent. But in case of small 

value of loss angle tangent the obtained solution are in action as an approximation. 

Formally, the Maxwell's equations don't change their view if to use instead of 

ε0 the complex constant )jtg1(0 δ−ε . Increasing of the function 

ρδ−ε=ε ′′−ε′=ε /a)jtg1(j 0  with a coming to axis 0=ρ  causes field 

amplitude reduction due to ε ′′ . At boundary a=ρ  we have 0ε≈ε  if to use an 

assumption 1tg <<δ . Therefore, relations (3.8)-(3.11) take place and for non-
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reflecting magnetodielectric with change in argument of Bessel's function ak0  on 

)tg
2

j
1(ak0 δ− . 

 Loss power absorbing by cylinder is equal to loss power, which was taken from 

decrement wave 2/xtgkxjk
0

oo eeE δ−−  or appropriate cylinder area in the isoimpedance 

body absence. Really, the placement in decrement primary wave is accompanied 

with exact coincidence of media parameters on both sides from cylinder boundary. 

 

 

3.3. Isoimpedance materials in antenna engineering 

 

3.3.1. The considered unique property in the previous paragraph of the 

isoimpedance cylinder to make refraction without reflection is very useful for 

different antenna-feeder installations creation. For example, one may do a 

transparent coating for supports placed in the reflector antenna aperture. New 

possibilities will be open for lens antenna creation. The expansion of relations (2.5) 

to the formulae 

)z,y,x(),z,y,x( 00 χµ=µχε=ε , (3.42) 

where )z,y,x(χ - arbitrary continuos coordinates function, does not violate the 

condition (2.4). Therefore, in general case the isoimpedance inhomogeneous 

medium is characterized with formulae (3.42). Relation (2.18) specifies the circular 

wave velocity but expression χω=εµ //1  doesn’t have of this physical 

meaning in general case. Nevertheless, for 1>χ  one may to consider the medium 

as inhomogeneous decelerating one. 

 If on surface or on its part which divide the homogeneous medium with 

1rr =µ=ε  and the inhomogeneous one with χ=µ=ε rr , we have boundary 

condition χΓ = 1 implement, it is continuos not only impedance but also phase 

velocity on boundary. In some cases there are sufficient conditions for providing of 

non-reflecting coming of T-wave in the isoimpedance inhomogeneous medium. 
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3.3.2. Let us consider relations for current and charge of wire which is 

immersed in the inhomogeneous medium. For curvilinear wire, disposed in 

homogeneous medium, the differential equations 
)(f)(Ij)(),(j)(I 00 ξ+ξµωε−=ξτ′ξωτ=ξ′− ξξ  (3.43) 

have been analyzed [7,74], where 

∫∫
π

ρ

π

ϕ ϕϕξε=τϕϕξ=
2

0
0

2

0

d),(Ea,d),(HaI , 

ρξρ

π

ξ ′πε=ϕ′ε=ξ ∫ )E(a2d)E(a)(f m0

2

0
0 . (3.44) 

Disposition of wire in the inhomogeneous medium is accompanied by 

preservation in (3.44) the formula for current, but it is need to modify the linear 

charge definition:  

)(E)(a2dEa m

2

0

ξξεπ≈ϕε=τ ρ

π

ρ∫ .   (3.45) 

According to (3.45) we suppose that in points of wire section contour due to 

small value of radius a one may to consider the permittivity of environment 

medium is constant and is equal to function ),0( ξ=ρε=ε  in points of wire axis 

line. Together with (3.45) it is generalized the formula for nearsurface field 

characteristic: 

ρξ ′ξπε=ξ )E)((a2)(f m .   (3.46) 

The generalized equations for τ,I  derivation is similar to relations (3.43) 

fabrication [7,74]. The Maxwell's equations intengrated along the wire contour 
( ,0HH,0E z === ρϕ z=ξ ) give: 

m
zmm

m
m Hj

E

z

E
,Ej

z

H ωµ−=
∂ρ
∂−

∂
∂

ωε=
∂
∂− ρ

ρ , 

zmm Ej)H(
1 ωε=ρ
∂ρ
∂

ρ
.  (3.47) 

Hereto, the view of first from the equations (3.43) is unchanged but second 

equation will be more complicate: 
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)(f)(I)()(j)()(ln)( ξ+ξξµξωε−=ξτ′ε−ξτ′ ξξ .   (3.48) 

The substitution of first relation from (3.43) in (3.48) leads to ordinary 

differential equation 

)(fjI)(kI)(lnI 22
0 ξω−=ξχ+′′χ−′′ ξξξ ,   (3.49) 

which is wrote for further to be analyzed the isoimpedance medium variant, 

characterizing with relations (3.42). 

The equation  

)(fjIkI 2
0 ξω−=+′′ξ    (3.50) 

has operated [7,74] in the homogeneous medium instead of (3.49). It is interesting 

to note that the homogeneous variants of equations (3.49),(3.50) have analogical 

solutions. Namely, if free part of wire current, when medium is homogeneous one, 

according to (3.50) is  
ξξ− +=ξ oo jk

2
jk

10 eCeC)(I ,   (3.51) 

in a problem with the inhomogeneous medium analogical solution has a view 

∫ ξχ=ξζ+=ξ ζζ− d)(where,eCeC)(I oo jk
2

jk
10 .   (3.52) 

3.3.3. Let us research the two-wire line electromagnetic field when the line is 

placed in partly inhomogeneous medium. Wires of the line are going normally to 

plane z=0, and half space z<0 is occupied with an air and half space z>o is filled 

with the inhomogeneous isoimpedance material. In each of media a field has T-

wave structure that allow to consider due to f(z)=0 the functions (3.51),(3.52) as 

full currents in wires. Coming from half space z<0 current wave 

)zjkexp(CI 010 −=−  transforms in current wave )jkexp(CI 010 ζ−=+  for z>0, 

where dz)z,y,x(
z

0
00∫χ=ζ , and 00 y,x  - are wire cross section center coordinates. 

Because for any view of function  )z,y,x(χ  on boundary z=0 we have also 

0=ζ , one observes the current continuity for  z=0. For charge continuity it is 

necessary to put 1)0,y,x( =χ , that with account of (3.42) causes boundary 

parameters continuity. Coming over without reflection in half space z>0 
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electromagnetic T-wave safe a structure of two-line field but has a decelerating in 

accordance with formula for phase velocity 00 c/cv <χ=  when 1>χ . 

Let us consider a problem about field of two-wire line laying on plane 

boundary between homogeneous and inhomogeneous impedance media. Now each 

of wires has partial boundaries as with air so with magnetodielectric. As it is shown 

for strip lines in [57] it is expedient to diverse two currents: current with an air 

surround Ia
 and current with magnetodielectrical surround mdI . These currents are 

described with help of formula (3.44) but with integration only on appropriate parts 

of circle ρ = a. In each of half spaces now only quasi T-wave is coming, and only 

longitudinal component of electrical field intensity is present. Due to 0)(f ≠ξ  the 

currents mda I,I  consist of summons (3.51),(3.52) and ones depending on right 

parts of inhomogeneous equations (3.50),(3.49), because additional energy motion 

takes place in planes z=C. Hence, the inhomogeneity of space where two-wire line 

is disposed causes an appearance of transverse radiation energy. 

3.3.4. Let us now consider a spiral antenna disposition, at least partly, in 

magnetodielectric cylinder with parameters according (2.6). One folds two-wire 

feeder so that its wires create the hyperbolic parallel spirals 

)0(hz,/a ∞<ϕ<±=ϕ=ρ .   (3.53) 

All points of spiral wire, corresponding to z=h, 1>ϕ , are inside the cylinder. 

Length of spiral plane curve is found [75] according formula 
ϕ
ϕϕ++ϕ+ϕϕ+−=ξ

0
)]1ln(/1[a 22 , (3.54) 

where for wire part in air 10 0 ≤ϕ<ϕ<  and for wire part inside cylinder 

∞<ϕ<ϕ= 01 . At first part the equation (3.50) is valid and at second part- 

equation (3.49). For coefficients ξξ ′χ=′ε )(ln)(ln  and )(/a)( 222 ξρ=ξχ  finding 

it is necessary from (3.53),(3.54) to have the dependence  )(ξρ . It is need to have 

representation of inverse function )(ξϕ  that is difficult to obtain due to 

transcendental character of function )(ϕξ . But on the turn π+<ϕ<π )1m(2m2 , 

very close to a circle, one may to give the approximate linear relation: 
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ϕ+=
π+

ϕ+
+

−ξ=ξ 21s CC
)1m2(
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1m2

ma2
, 

)]21(/)aaln[(aaa2 s
2
s

22
s

2
s +ρρ+++ρ+−=ξ . (3.55) 

It is simply to find with help of (3.55) the functions 

ξ
ξ

ξ

ξ

− ξ−ξ=ξχ=ξζ−ξ=ξχ ∫ s

s

)C2/(Cd)(,C/)C()( 1
21

221  

which are in formulae (3.49),(3.52). 

Due to the isoimpedance cylinder the plane T-wave of straight-line feeder is 

converted in circular T-wave of folded feeder. The similar effect is not observed if 

the feeder is fold in an air.  

Because of the folded feeder is placed in the inhomogeneous medium, there are 

present the longitudinal components of electrical and magnetic fields ϕϕ H,Ѓ  

relatively to wires currents. Their addition to circular T-wave intensities makes 

inside cylinder a field in view of conditionally quasi T-wave which is convoyed 
with normal energy flows (due to zz EH,HE ϕϕ ) and axis energy flows (due to 

ρϕρϕ EH,HE ). Two opposite directing along axis z flows create the great mutual 

compensation. But for radially convergenting energy the nearaxis area 0→ρ  

performs a role of perfect screen, and the radial coming away energy flow of 

radiation must to increase. The additional contribution in transformation of circular 

T-wave in quasi T-wave is given by effect of infinite medium change on its part as 

the isoimpedance body. 

Therefore, in suggested spiral antenna we have a smooth transformation of 

feeder T-wave in cylindrical radially divergenting wave with intermediate "agent" - 

circular quasi T-wave. During practical realization of antenna with circular wave it 

is necessary to produce MD cylinder with finite height. Particularly, spiral wires 

may be placed on the cylinder's tops.  

It is interesting to consider a slot spiral antenna with circular wave. The 

antenna may be made in view of the narrow spiral slot in metal disc of radius a, and 
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disc is placed between two MD half cylinders. The circular quasi T- wave has 

zH,Eρ  and radiates due to ϕρ=Π HEz  and zHEϕρ =Π . 

3.3.5. Let us pass to consideration of screw antenna construction with circular 

wave. Two-wire feeder is connected to two screw wires which have axis lines with 

equations  

πϕ=ϕρ=ϕρ= 2/hz,siny,cosx 11 ; 

πϕ=ϕρ=ϕρ= 2/hz,siny,cosx 22 , 

where h- step of winding. Screw line of small radius 1ρ  is placed completely inside 

MD cylinder. The screw line of great radius 12 ρ>ρ  may be placed as inside 

cylinder so on its surface. For longitudinal coordinates 21,ξξ  along each of wires 

we have 
222

2,12,1 4/h π+ρϕ=ξ .   (3.56) 

The motion along screw line is accompanied according to (2.6) with 

independence µε,  from z that allows to put nearby inner ( outer ) wire   

)/a(/a 2211 ρ=χρ=χ . The equation (3.50) becomes simpler: 

)(fjIk)(I 2,12,12,1
2

2,1
2
02,12,1 ξω−=χ+ξ′′ .  (3.57) 

The homogeneous equations (3.57) have the solutions: 
2,12,1o2,12,1o jk2,1

2
jk2,1

1
2,1

0 eCeCI ξχξχ− += . 

Due to (3.56) the phases of running waves of two wires currents are not coincide in 
general case. But for small step 2,12h πρ<<  it is absent that corresponds to 

circular quasi T-wave between two screw windings 

)0H,0E,HH,EE( 00
zz ≈≈>>>> ϕϕρρ . 

Curvilinearity of wires and the inhomogeneity of magnetodielectric cause for 
(3.57) 0f 2,1 ≠ , i.e. existence of currents creating a radiation into direction ρ and z 

due to 0H,0E ≠≠ ϕϕ . Flows of power, characterizing with values ρϕϕ HE,HEz , 

are not great that it is impossible to say about ϕρϕρ =Π=Π HE,HE zz . The 

control of relation z/ΠΠρ  allows to create a radiation previously in radial or 

axis directions. 
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3.3.6. Let us now consider on the radiation patterns calculation for the shown 

antennas. The presence of the isoimpedance inhomogeneous body in antenna 

construction makes the radiation field calculation more complex. If the electrical 

(magnetic) current m,ej  is placed in the homogeneous medium, in far zone of 

radiation field the intensities components are equal to 

00
me

0 Z/EH,Z/EH,/)AAZ(2jE ϕθθϕϕθθ −==λ+π−= ,

,0H,0E,/)AAZ(2jE rr
me

0 ==λ−π−= θϕϕ    (3.58) 

,sinAsincosAcoscosAA zyx θ−ϕθ+ϕθ=θ  

,cosAsinAA yx ϕ+ϕ−=ϕ  

zdydxdej
r4

e
A )coszsinsinycossinx(jkm,e

z,y,x

jkr
m,e

z,y,x ′′′
π

= θ′+ϕθ′+ϕθ′
−

∫ .   (3.59) 

As is well known that the filling of volume v with the inhomogeneous MD may be 

taken into account by means of adding to formula (3.59) the equivalent currents 

,Hj)(j,Ej)(j 0
m

0
e ωµ−µ−=ωε−ε=    (3.60) 

where H,E - field intensities in volume v. Really, the Maxwell's equations easily 

may be transformed: 

,jEjE)(jEjHrot e
000 +ωε=ε−εω+ωε=  

m
000 jHjH)(jHjErot +ωµ−=µ−µω−ωµ−= . 

Hence, for wire antenna radiation field finding the formulae (3.58)-(3.60) are 

used, where volume integral ∫∫∫ ∫ ρρϕ=
π+

−

a

0

2

0
v

h

h
d...ddzdv...  is used, and also it is 

necessary to use a linear integral for current satisfying to equation (3.49). Hereto, it 

is justify the traditional assumption about possibility of non-full wire current 

application but only its harmonic part according to (3.52). Similarly instead of full 

field in (3.60) one may to account only known part in view of circular wave. 
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3.4. Radio circuits components miniaturization 

 

 3.4.1. The problem of radio circuits wave-elements miniaturization attracts the 

attention of the specialists for many years. The classification of elements with the 

linear dimension l as lumped one ( λ<<l ) or distributed one ( λ~l ) has some 

non-rigorousity. For example, thin coaxial cable part with l ~ λ  may be fold into 

a spiral with diameter λ<<d , "disturbing" a principle of elements dividing on 

lumped and distributed ones. In contrast to UHF circuits the MF, HF circuits 

elements don't usually contain the long lines due to great sizes. Meanwhile, the 

functional abilities of the wave elements with multi-conductor lines [76,77] are 

very various because it is may be realized the impedances transformers, the broad-

band matching devices, couplers, filters, multiplexers, symmetrical installations 

and so on. 

The electromagnetic field inside wave multi-ports devices are described with 

quasi T-waves composition. The ideal T-wave, being non-varying electromagnetic 

structure in the infinite frequency band, provides in real conditions the broad band 

characteristic representation of wave multiports circuits.  

The multi-cylinder coaxial construction of the line [76] is not convenient for 

production, it is hard to make a ring from one. During folding of non-screening 

multiconductor line the electromagnetic field is not a quasi T-waves variety 
because the essential azimutial (longitudinal) components of field vectors ϕϕ H,E  

appear that create the radiation energy losses. Due to shown cases one can't to do 

the multiconductor lines miniaturization for MF, HF, VHF excluding partial 

miniaturization for spiral elements of filters. At present time this consideration may 

be revised because one may to add to known miniaturization techniques [76-79] the 

principally new possibilities if to use the circular T-waves. 

3.4.2. The generalizing the problem, has been considered in p.3.3.3., we 

dispose the multiconductor line in the isoimpedance medium. Let a half space z>0 

is filled with the inhomogeneous medium with )z(rr χ=µ=ε  having the same 
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impedance which is for homogeneous half space ( z<0 ) with 000 /Z εµ= . If m 

wires are placed normally to planes z=C a field in the inhomogeneous medium is 

two T-waves with summary intensity 

)eCeC)(y,x(EE oo jk
2

jk
1

0 ζζ−
⊥⊥ += ,  (3.61) 

where dz)z(
z

0∫ χ=ζ . For wires currents and their linear charges the 

representations ,m,...2,1,eCeC)z(I oo jkjk =ν′′+′= ζ
ν

ζ−
νν  

)eCeC()z()z( oo jkjk
00

ζ
ν

ζ−
νν ′′−′µεχ=τ  are justified. The phase velocity of T-

wave, running along axis z, is equal to ).z(/cv 0 χ=   

For example, if medium characteristic is 

),l2/z(tg1)z( π+=χ   (3.63) 

we have 0v →  for distance z=l, i.e. the total decelerating of T-wave. Hence, 

according to (3.61), (3.62), the  plane T-wave in the inhomogeneous medium is one 

with varying velocity depending from characteristic )z(χ . Standard determination 

of wavelength )z(/f/v)z( 0 χλ==λ  shows that for 1>χ  the shorting of 

wavelength takes place when λ  is smaller than 0λ  as wavelength in free space. 

Hence, the application of multiconductor line, immersed in the inhomogeneous 

magnetodielectric, allows to produce an equivalent homogeneous line with middle 

wavelength 

)z(/zdl
l

0

1
0m χλ=λ ∫− .  (3.64) 

For example, substitution (3.63) in (3.64) gives 2/0m λ=λ , but it is possible to 

do and more shorting. 

3.4.3. Let us now consider the peculiarities of wave elements calculation if the 

T-wave approximation is used. The UHF wave elements, containing wires 

segments, are couplers, filters, impedance transformers and so on [76-80]. The 

problem of adequacy of description of the electromagnetic fields of these devices 

with the help of the telegraphy equations, i.e. in approximation of T-waves, has not 

[78] of quantity estimations. The schemetechnique specialists are forced to be 

satisfied with necessity of experimental testing of theoretical results. The 
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electrodynamical analysis of such constructions is very complex as on stage of 

boundary problem recognition so and during solution reception. We now consider 

the electrodynamical justification of schemetechnical models of multiconductor 

wave elements with utilization of non-homogeneous differential equations for 

currents and charges of wires [7,74]. 

In exact meaning the plane T-wave may be observed only in line with infinite 

length and parallel placement of wires. The real curvilinearity and finite sizes of 

wires lead to necessity of estimation of the difference between real quasi T-wave 

and ideal T-wave. A quasi T-wave modeling may be made relatively simply if to 

take as basic the differential equations for current and linear charge (3.43). The 

convenient view of results is obey to refusal from field intensities analysis. For 

output parameters multiports matrix it is sufficient to analyze only corrections to 

wires currents 
ξξ− +=ξ oo jk

2
jk

1 eCeC)(I ,   (3.65) 

corresponding to ideal T-waves. Current of each wire has, besides expression 

(3.65), also non-homogeneous equation (3.50) solution as integral  

ξ′ξ′−ξξ′ω−=ξ ∫
ξ−

0

1
n d)(ksin)(fkj)(I .  (3.66) 

The charge linear density is finding with the help of substitution of (3.65), (3.66) in 

the first of equations (3.43), whence we  have for each wire 

ξ′ξ′−ξξ′+ω−=ξτ ∫
ξξξ− d)(kcos)(f/)eCeC(k)(
0

jk
2

jk
1 .   (3.67) 

As example, for four terminal networks (two port) we shall show the matrix [a] 

procedure, taking into account the difference between two-ports field and T-wave 

with the help of the additional summons of current (3.66). Two wires with arbitrary 

axis geometry are subjected to condition of voltages determinations in regular 

areas: the beginning of wires form an input pair of terminals and the ends- output 

pair of terminals. As for input so for output the conditions are fulfilled for charges: 

2211 , ′′ τ−=ττ−=τ  and for currents 2211 II,II ′′ −=−= . Wire 12 has a length l 
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and wire 21 ′′ - length l′ . Formulae (3.65)-(3.67), considering for wire beginning 12 

( 0=ξ ) and for end ( l=ξ  ), give the equations ( kl=θ ): 

ξ′ξ′−ξ′−θτ−θ= ∫ d)l(ksin)(fjcsinjccosII
l

001012 ,   (3.68) 

ξ′ξ′−ξ′+θτ+θ−=τ ∫− d)l(kcos)(fcossincjI
l

01
1

012 .   (3.69) 

Input and output of two-port circuit are created by regular feeder segments, 

hence their capacities per length unit lC  are the proportional coefficients between 

charges and voltages. Participating in (3.68),(3.69) near-surface field characteristic 

is equal to zero only in approximation of T-wave. In considering general case for it 

the linear relation 

)(FI)(F)(f I2212 ξ+ξτ=ξ τ    (3.70) 

is justified where functions IF,Fτ  according to(3.70) correspond to fields in open 

circuit and short circuit tests for two-port output: 

0forI/fF,0forI/fF 221212212 =τ==τ=τ .   (3.71) 

 The substitution of (3.70) in (3.68),(3.69) leads after simple transformation to 

matrix [a] of equation system 
















=








2

2

2221

1211

1

1

I

U

aa

aa

I

U
, 

namely: 

θ+θ+θ= τ
−

τ sinAjccosBcosa 1
011 , 

•II
1

01е12 C/)cosBsinAjc(sinjZa θ+θ+θ= − , 

)cosAsinBjc(CsinjZa 0•
1
2е21 θ+θ+θ= ττ
− , 

θ+θ+θ= sinBjccosAcosa I0I22 , where   (3.72) 

ξξ−−=ξξ−ξ= ∫∫ ττττ

l

0 I,

l

0 I,I,0I, d)l(kcosFB,d)l(ksin)(FjcA .   (3.73) 

In idealized variant of parallel placement of wires 12  and 21 ′′ and with 

neglecting of end fields we have 0F,0F I ==τ  and the known formulae  

θ=θ=θ== − sinjZa,sinjZa,cosaa 1
е

0
21е

0
12

0
22

0
11 .   (3.74) 

 Two-port inversion condition demands after substitution in it of formula (3.72) 
for numbers I,I, B,A ττ  of fulfillment of relation 
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0ABABBA III =−++ τττ .   (3.75) 

Therefore, functions I,Fτ  arbitration is limited by equation (3.75) implement 

demand. We may introduce the models [74] of small deflection of the electrical 

field force line nearby wire. It will give a possibility to estimate according to (3.71)-

(3.73) a contribution of quasi T-wave in comparison with field of ideal T-wave by 

means of comparison of parameters (3.72) with values (3.74). 

 

 

3.5. Circular waves action on electron and plasma beams 

 

3.5.1. The electron or plasma beams perform an active role in varies devices of 

modern engineering: particles accelerators, electron-optical devices, electron 

devices for amplifying and generating of vibrators, electron microscopes, plasma 

guns and so on. The beams parameters control is usually making with the help of 

the electromagnetic fields of proper structure 81]. Evidently, that for these purposes 

We may use the electrical and magnetic fields of the circular waves in the 

inhomogeneous isoimpedance media. In creating of the appropriate devices, it is 

useful to account the proper peculiarities of suggested fields structures. 

In the electromagnetic wave a charged particle is forced as from electrical so 

from magnetic fields. Therefore it is possible to have differential combinations of 

action and control of electron beams. 

For T-wave and, mainly for E,H-waves, ones may to observe force lines 

structure maintenance at frequency band. This property of guided waves represents 

an interest for problem solution of stable electron and plasma beams. 

The circular waves have the additional peculiarities else. The circular character 

of energy motion with repentance and superposition of plane (sphere) fronts one on 

other potentially promotes to creation of the high intensity fields. The wave 

performs in role of electromagnetic screw-view coating for electron or plasma 

beams. For creation of effective exchange of energy between beam and wave it is 
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important that using isoimpedance material provides wave decelerating with doing 

of any desirable velocity value. The screw-view character of electromagnetic 

energy motion creates conditions for increasing of time of interaction between wave 

and particles beams. At last, isoimpedance media and circular waves have 

additional possibilities of unusual beam and field interaction due to authophasing 

condition in view of relationships (2.29),(2.45). 

Let us discuss how the circular waves may be used in plasma electromagnetic 

holding installations. Despite on the great number of theoretical and experimental 

works [82] at magnetic holding of high temperature plasma, this problem hasn't 

desirable solution at present time. Besides others, one principal contradiction 

opposes to the solution. Usually for plasma thermoisolation one tries to use a 

magnetic field with non-varying structure of force lines in the time and space. But 

an appearance of plasma non-stability almost is accompanied with alternating 

electromagnetic fields that isn't coordinated with external static fields. 

It is interesting to consider the next argument: for holding of such dynamic 

object as plasma it is necessary to use electrodynamical methods which allows to 

have electromagnetic waves with stable structure of Poiting's energy vector lines. 

Otherwise speaking, initially a problem of holding must be recognized in 

electrodynamics frameworks but with solution searching in classes of waves with 

stable force lines of the electrical and magnetic fields. 

As is well known, that in the homogeneous media such waves are plane and 

sphere T-waves only, having parallel or divergent unlimited straight-lines as energy 

lines. Therefore, to hold a plasma in finite volume with the help of plane (sphere) 

T-waves only is impossible. It is suggested to use for thermoisolation the circular 

T-waves in the isoimpedance inhomogeneous media. From four possible classes the 

most interest is application of the coordinates of PBII class (plane-axis) and SBIII 

class (sphere-axis). 

During T-wave application problem consideration we use for plasma the usual 

assumptions [82]: a) about high electroconductibility which take place for great 
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temperature, b) about possibility of observation of forces on plasma surface only as 

for gas-view perfect conducting body.  

One traditional idea consist of doing of plasma beam selfsqeezing due to the 

longitudinal surface currents, i.e. to circular lines of magnetic field intensities. 

Second traditional idea is the following: in order to stabilize the plasma beam form 

it is necessary to use longitudinal lines of magnetic field, i.e. current circular lines. 

Generally, it is need to create on plasma beam surface the screw lines of current. 

We may make the circular T-wave to participate in plasma beam holding if it 

will be one of two conductors forming the channel waveguide.  

This is the simplest construction of hot plasma holding installation shown on 

Fig.3.2. The vessel 1 with gas is located inside the isoimpedance inhomogeneous 

magnetodielectric 2 having ratio permittivity and permeability variation along 

radius in accordance with law (2.6). 
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Along wire of winding 3 the current wave runs with velocity 0c  because for 

b=ρ  we have 1rr =µ=ε . After conversion of gas in plasma a conductor 1 

performs in role of inner winding with screw current, and in nearsurface layer for 

ρ = a one observe the decelerating motion of electromagnetic energy with 

velocity b/ac/cv 0r0 =ε= . The simplest circular T-wave has circular (along ϕ ) 

energy flows with fields intensities according (2.24): 

 z00
bjk HZHZe

ab
U

EE 0 −==
−

== ϕ−
ρ ,   (3.76) 

where U is electrical voltage for running wave. Two quasi T-waves (direct and 
reflect) will be observed in construction shown on Fig.3.2. with intensities closed 
to relations (3.76). Evidently that for great intensity H production it is necessary in 
accordance with (3.76) to do a difference b-a small value. But, if to recognize a 
problem of near plasma wave velocity decreasing, it is necessary to choose 
appropriately the ratio a/b. 

Let us now consider also thoroidal construction with circular T-wave. For 
mathematical description the coordinates (2.34) from class SBIII are used. For 
existence of T-wave with intensities (2.35) the isoimpedance medium must have 
ratio parameters according to (2.8). The expressions (2.8),(2.35) are more complex 
than (2.6),(3.76) that is accompanied a transition from straight-line beam (Fig.3.2) 
to circular plasma beam with radius a=ρ . The magnetic field intensity ηH  is 

tangential to beam surface and is a stabilizing cause for it.  Second guiding 
conductor is a winding which is placed on the thoroidal isoimpedance 
magnetodielectric surface. 

 

3.6. About utmost parameters realization 

 

3.6.1. The interest to the dielectric and ferromagnetic with utmost magnitudes 
of parameters ∞→µ∞→ε ,  exists during all period of the electrodynamics 

development. The natural dielectric material with ε → ∞ is absent. If it will 
create this material artificially, that its behavior on boundary will be equivalent to 
perfect conductor presence. Hence, formally in the electromagnetic installations we 
may  use instead of conductors the utmost dielectrics if only frequency 0>ω . The 
various applications will be find and for utmost ferromagnetic with ∞→µ . Let us 

consider the principal possibilities of artificial realization of the utmost dielectric 
and ferromagnetic with metal-air production methods application (p.3.1). It is 
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known [12,38] that ratio permittivity of dielectric, has been made from metal 
particles, may be found according to formula 

)v1/()v21(r −+=ε , (3.77) 

where v is ratio volume occupied by a metal. That less place is taken in material for 
an air than due to 1v →  a permittivity rε  is close to infinity. The similar result may be 

obtained with the help of the device shown at Fig.3.1,a, if the space between capacitor's 
plates will be filled with metal rods, sizes of which must be more and more smaller. 
The ferromagnetic material creation is produced according p.3.1.2. with the help of 

small turns L loaded by capacities C. For frequencies LC/10 =ω<ω  the additional 

impedance, which have been brought from the turn to primary winding 0L , has the 

inductance character so that equivalent inductance of the winding is equal to 

[ ] )/()1k(LL 22
0

222
00э ω−ω−ω+ω= , where k is coupling coefficient. The presence 

of great number of the turns demands of the relation obtaining of the view likes (3.77) 
but the principal possibility of the approach ∞→µ  already is evident. For that is it 

necessary to diminish sizes of turns with simultaneous increasing of their number. 

3.6.2. The variants of utmost dielectric and ferromagnetic application are useful 
to consider with regard of formal analogy- Maxwell's equations duality principle 
for fields creating by dielectric and ferromagnetic filaments. The electromagnetic 
field of two-filament dielectric transmission line for 0>ω  has the same electric 
and magnetic force lines that the field of usual line from two metal wires. 
According to formal analogy between two Maxwell's equations two-filament 
ferromagnetic transmission line has the electrical force lines embracing filaments 
and the magnetic force lines coming from one filament to another one. 

If it will be created utmost ferromagnetic filament, it will give a possibility to 
realize the capacity transformer [83,84]. For that it is need to embrace two closely 
placed capacitors with a winding from the ferromagnetic filament with ∞→µ . To 

one capacitor the alternating electrical voltage source is connected, second 
capacitor is loaded. The electrical induction vector flow of first capacitor creates an 
alternating magnetic field where along the force line we shall dispose the 
ferromagnetic filament. The magnetic winding with alternating by time 
magnetizing embraces the second capacitor plates inducing in latter the electrical 
induction alternating flow. Therefore, in the load the electrical current will appear 
with value depending on mutual capacity magnitude. The electrical induction flow 
in each capacities will be consist of the algebraic sum of two flows: proper one, 
which are created by electrical voltage between own plates, and mutual one, caused 
by magnetic field intensity curl, i.e. depending on electrical voltage on another 
capacitor. The capacity transformer equations are the following: 
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22122111 UjCTUjI,TUjUCjI +ω±=ω±ω= , where 21 I,I  are currents of 

capacitors,  21 U,U  - its voltages and T is mutual capacity between capacitors. On 

the contrary to inductance transformer for the capacity one the optimal regime is 
deals with small load impedance. This property may be useful for matching of high 
impedance of source with small load impedance. 
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CONCLUSION 
The dielectric and magnetic properties of material are usually investigated with 

separate action of electric and magnetic fields. This ideology owes, at first, to 
historical way of electrodynamics establishment by means of combination and 
generalization of electric and magnetic phenomena theories. Besides others, in 
natural matters the macroscopic processes of polarization and magnetizing are 
presented simultaneously very rarely, therefore usually materials are divided on 
dielectrics and magnetics. 

At present time the conditions are suitable for "wave" view establishment: 
wave process in medium demands the equivalent and interrelated participation of 
the dielectric and magnetic properties. Besides, the technical possibilities of 
artificial media realization are very broad now. The realization of the functional 
characteristics of devices with the help of appropriate parameters synthesis of the 
inhomogeneous media - it is progressive technology of our days. It is sufficient to 
remind the great achievements of integral microelectronics, integral optics. 

This work spreads the exploration and application of media with the 
interrelated dielectric and magnetic properties - binary materials. It is shown great 
number of variants of the inhomogeneous isoimpedance media and circular 
(globally plane, sphere) waves in this media. There are more generalized media 
with factorizied permeability/permittivity ratio and generalized T,E,H-waves. 

 It is possible to forecast the further research directions. At first, the binary 
material creation methods will develop, so as dielectric and magnetic particles 
unification and their compositional creation in metal-air constructions. At second, 
it is need to broad the theory of waves in binary media. There are perspective the 
further investigations of anisotropic isoimpedace media, on controlled 
isoimpedance materials which may be useful for electrical control lens antennas 
[85]. The circular waves in the isoimpedance media due to variety and uniqueness 
of some properties will find application in radio electronic, electroengineering 
equipments that is shown in this work only partly. 
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