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ВВЕДЕНИЕ 
 

 
 Более пространным для данной книги было бы название «Равнопроницаемые маг-

нитодиэлектрики и импедансно самосогласованные проводниковые структуры». Ос-
новное достоинство этих непоглощающих сред и структур состоит в свойстве быть еще 
и неотражающими, т.е. полностью прозрачными, для электромагнитных волн. Некото-
рые из приводимых результатов были получены ранее[1-5]. 

 Равнопроницаемая среда в силу равенства относительных диэлектрической и маг-
нитной проницаемостей εr(x,y,z)=µr(x,y,z)=α(x,y,z) обеспечивает одинаковость действия 
на электрическую и магнитную составляющие электромагнитной волны при любых 
зависимостях α(x,y,z). 

 В полнопрозрачной структуре металловоздушного исполнения соблюдается баланс 
участия продольных токов проводимости (в эквивалентной индуктивности) и попереч-
ных токов смещения (в эквивалентной емкости).  

 Рассматриваемые расчетные модели не учитывают тепловые потери энергии. Для 
практики это означает, что реализация полнопрозрачных сред и структур должна вы-
полняться с использованием совершенных диэлектриков, магнетиков и хорошо прово-
дящих металлов. Заметим, что в литературе [6,7] среда считается прозрачной в диапа-
зоне частот, если равны нулю мнимые части ее комплексных проницаемостей. 

 В неограниченном вакууме могут существовать лишь волны, переносящие энер-
гию вдоль параллельных или расходящихся прямых. Наличие вещества в виде диэлек-
трических, магнитных, проводящих тел влияет на волновой процесс, создавая эффекты 
отражения, рассеяния, дифракции, рефракции, замедления скорости. По классическим 
воззрениям волновое движение есть процесс передачи возбуждения в системе (цепочке) 
осцилляторов - моделей малых объемов среды. В данной работе главенствует принцип: 
нужно уже на уровне передачи возбуждения от точки к точке обеспечить отсутствие 
отражения назад. При этом явление рефракции как движение энергии по искривленным 
путям протекает в чистом виде - при отсутствии отраженных (рассеянных) полей. 

 Основным условием существования чисто рефракционных процессов является 
требование к среде о равноправном участии двух «сил» возбуждения - электрической и 
магнитной. Иными словами, это есть требование равнопроницаемости среды либо ус-
ловие однородности возбуждения в виде неизменности импеданса как отношения на-
пряженностей электрического и магнитного полей. Последнее условие на поверхности 
разрыва проницаемостей (границе раздела сред) переходит в требование согласования 
сферической (плоской) формы фронта падающей волны со сферической (плоской) гра-
ницей. 

 Особый интерес к полнопрозрачным средам и структурам оправдан совокупно-
стью уникальных свойств преобразователей волн с их использованием. Достаточно от-
метить такие возможности неразрушающего действия полнопрозрачных сред на струк-
туру волны: чисто рефракционный эффект поворота волны на любой угол, замедление 
волны при отсутствии отражения, закольцовывание движения энергии, огибание про-
извольных препятствий без рассеяния и отражения.  

 Напомним, что разработчики реальных систем передачи электроэнергии, передачи 
информации давно осознали полезность и, в большинстве случаев, оптимальность од-
нонаправленного волнового процесса, когда отсутствует отраженная волна. В данной 
работе эта идеология получает дальнейшее развитие. На основе представленных ре-
зультатов возможен активный обмен принципами исполнения устройств различных 
частотных диапазонов. Методы построения систем (цепей) с распределенными пара-



метрами можно использовать в диапазонах ВЧ, СЧ и даже НЧ. С другой стороны, тео-
рия цепей с сосредоточенными элементами применяется собственно для обоснования 
реализации изоимпедансных структур на высоких частотах (см. гл.3). 

 Приведенные в гл.2 принципы использования полнопрозрачных сред будут полез-
ны разработчикам конкретных устройств радиотехники, электроники, электротехники, 
акустики: малогабаритных или невыступающих антенн, миниатюрных ВЧ устройств 
(фильтров, диплексеров), просветляющих покрытий, устройств защиты от пучковых 
излучений, новых малогабаритных фокусирующих линз, рефракторов-«невидимок», 
устройств защиты строительных конструкций в виде рефракторов сейсмических волн, 
новых замедляющих структур электроники, устройств электромагнитного удержания 
горячей плазмы и т.д.  

 



 
ГЛАВА 1. ЭЛЕКТРОДИНАМИКА РАВНОПРОНИЦАЕМЫХ 

МАГНИТОДИЭЛЕКТРИКОВ 
 
 
1.1. Плоские волны в изоимпедансной среде с кусочно-постоянными  
проницаемостями 
 
1.1.1.Хорошим введением в круг рассматриваемых вопросов является анализ из-

вестных формул Френеля-Снеллиуса о падении плоской волны на плоскую границу 
раздела двух сред (рис.1.1). Теперь все пространство являет собой изоимпедансный 
магнитодиэлектрик (МД) с импедансом 

 Z0 0 0 377= =µ ε/  Ом 

как для верхнего полупространства, где ε1r=µ1r=α1, так и для нижнего, где ε2r=µ2r=α2. Ку-
сочно-постоянный вид характеристики проницаемостей εr=µr=α(z) также представлен 
на рис.1.1. 

 
Рис.1.1. Падение плоской волны на границу скачка проницаемостей 

 
 Формулы Френеля для параллельной и перпендикулярной поляризаций [8] пре-

вращаются в одну зависимость для коэффициента отражения: 
 
 R||=R⊥=R=(cosθ1−cosθ2)/(cosθ1+cosθ2),  (1.1) 
 

где θ1 есть угол падения, а θ2 - угол прохождения. Закон Снеллиуса определяет связь 
между этими углами как 

 sin sin sinθ
α
α

θ α θ2
1

2
1 12 1= = .  (1.2) 

С использованием (1.1), (1.2) имеем для коэффициентов отражения R и прохожде-
ния T: 

 1
2

1
1

1 12
2 2

1

+ = =
+ −

R T
cos

cos sin

θ
θ α θ

.  (1.3) 

 Из (1.3) следует, что для нормально падающей волны (θ1=0) наблюдается полное 
прохождение (R=0,T=1) через границу z=0 разрыва функции проницаемостей α(z) вне 
зависимости от величин α1,α2. Наглядное пояснение этого замечательного свойства 
изоимпедансного МД дает рис.1.2. Если бы нижнее полупространство было занято не-
магнитным диэлектриком (µr=1, er>1), то взаимное расположение векторов поля в па-
дающей, отраженной и прошедшей волнах соответствовало бы рис.1.2,а. Для второго 
случая с ферромагнетиком (εr=1, µr>1) имеем ситуацию по рис.1.2,б. Очевидно, что со-



вмещение двух электрофизических свойств сред в одном равнопроницаемом МД со-
провождается полной компенсацией отраженных волн ( E E H Ha

R
b
R

a
R

b
R= − = −, ). 

 
 а б 

Рис.1.2. Отражение от а) немагнитного диэлектрика, б) магнетика без диэлектрических свойств 
 
 Дальнейшее исследование зависимостей (1.3) целесообразно провести раздельно 

для двух вариантов соотношения чисел α1/α2=n1/n2, где n есть так называемый показа-
тель преломления. В первом случае волна выходит из воздуха (α1=1) в МД с большим 
показателем преломления (α2>1), когда в (1.3) берем α12<1. Второй случай соответству-
ет выходу волны из МД с большим показателем преломления в воздух, когда в (1.3) на-
до учитывать α12>1. 

 В первом случае согласно (1.2) угол прохождения θ2(θ1,α) является действитель-
ным при всех углах падения θ1 (рис1.3,а), как и функции R(θ1) (рис.1.3,б), T(θ1). Инте-
ресно отметить, что при α2=α≥10 все кривые R(θ1) сливаются в одну, описываемую 
формулой: 

 R= −tg2(θ1/2),  (1.4) 
 

т.е. коэффициент отражения не зависит от дальнейшего повышения α. Ввиду равно-
проницаемости МД коэффициент отражения близок к нулю при всех величинах α>1 
даже при наклонном падении волны, если только угол падения не превышает 30°. 

 
Рис.1.3. Зависимости угла прохождения (а) и коэффициента отражения (б) от угла падения 



Во втором случае, когда волна выходит из «плотного» МД в воздух (α1=α>1) дейст-
вительные значения для θ2, R наблюдаются, если только угол падения θ1 не превышает 
своего критического значения  

 θ1кр=arcsin(1/α).  (1.5) 
 
При этом угол прохождения будет всегда больше угла падения, что показывает, на-

пример, изображенная на рис.1.3,а штриховой линией зависимость θ2=θ2(θ1) при 
α1=α=2. 

 Если же θ1>θ1кр, то имеет место явление полного внутреннего отражения, когда 
 R j arctg= − −exp( sin )2 12 2

1α θ .  (1.6) 

 
Зависимости (1.5), (1.6) представлены соответственно на рис.1.4,а и рис.1.4,б. 

 
Рис.1.4. Критический угол падения (а) и коэффициент отражения (б) при выходе волны из МД с большим 

показателем преломления 
 
1.1.2.Уместно теперь сравнить полученные для изоимпедансного МД результаты с 

аналогичными данными для волновых процессов на границе двух немагнитных диэлек-

триков (µ1r=µ2r=1). Рассматривая только перпендикулярную поляризацию падающей 

волны, имеем [8]: 

 R r r⊥ = − − + −(cos sin ) / (cos sin )θ ε θ θ ε θ1 2
2

1 1 2
2

1 ,  (1.7) 

 

если волна проходит из воздуха в диэлектрик (ε1r=1, ε2r>1), либо 

 

 R r r r r⊥ = − − + −( cos sin ) / ( cos sin )ε θ ε θ ε θ ε θ1 1 1
2

1 1 1 1
2

11 1 ,  (1.8) 

 

если  ε1r>1, ε2r=1. По формуле (1.7) построены кривые на рис.1.5,а, а по (1.8) - на 
рис.1.5,б. 



 
Рис.1.5. Коэффициенты отражения от границ воздух-диэлектрик (а) и диэлектрик-воздух (б) 

 
1.1.3. Продолжим исследование прохождения волны через равнопроницаемый МД 

слой, вводя две плоскости разрыва проницаемостей (z=0,z=d на рис.1.6). С учетом обо-
значений по рис.1.6 имеем [9] для коэффициента отражения: 

 

 R
C C C C e C C C C e

C C C C e C C C C e

jk d C jk d C

jk d C jk d C=
+ − + − +
+ + + − −

−

−

( )( ) ( )( )

( )( ) ( )( )
2 3 1 2 2 3 1 2

2 3 1 2 2 3 1 2

0 2 2 0 2 2

0 2 2 0 2 2

α α

α α , (1.9)  

 
где Cν=cosθν, ν=1,2,3, причем по Снеллиусу 
 

 α1sinθ1=α2sinθ2=α3sinθ3.  (1.10)  
 

 
Рис.1.6. Прохождение волны через слой равнопроницаемого МД 

 
 Амплитуда прошедшей в нижнее полупространство волны определяется с помо-

щью коэффициента прохождения 
 

 T
C C

C C C C e C C C C ejk d C jk d C=
− − + + + −

4 2 3

2 3 1 2 2 3 1 2
0 2 2 0 2 2( )( ) ( )( )α α .  (1.11) 

 



Формулы (1.9)-(1.11) справедливы при произвольной поляризации волны. Зависи-
мости R(θ1,α1,α2,α3), T(θ1,α1,α2,α3) получаются по (1.9),(1.11), если в них согласно (1.10) 
использовать выражения 

 C C2
1

2

2 2
1 3

1

3

2 2
11 1= − = −( ) sin , ( ) sin

α
α

θ
α
α

θ .  (1.12) 

Для нормально падающей волны (θ1=0) имеем по (1.10) углы θ2=θ3=0  и в соответ-
ствии с (1.12) числа C1=C3=C2=1. Поэтому наблюдается прохождение волны без отра-
жения при любых αν и любой толщине слоя d. 

 Анализ зависимостей (1.9),(1.11) особенно прост, если сверху и снизу от слоя на-
ходится воздух. Тогда подстановка равенств α1=α3=1, α2=α, C3=C1 приводит к соотно-
шениям: 

 R
C C

C C jC C ctg k C d
=

−
+ +

1
2

2
2

1
2

2
2

1 2 2 22 ( )
,  (1.13) 

 
1

22 2
1
2

2
2

1 2
2 2T

k C d j
C C

C C
k C d= −

+
cos( ) sin( ) ,  (1.14) 

где k k C C2 0 1 1 2
2 2

11= = = − −α θ α θ, cos , sin . Среди возможных случаев зависимостей 

(1.13), (1.14) ограничимся рассмотрением варианта «плотного» МД слоя (α>5, C2=1) 
при его четвертьволновой толщине (d=λ/4=λ0/4α, где λ- длина волны в МД). Равенства 
(1.13), (1.14) упростятся: 

 R T=
−
+

=
+

cos

cos
,

cos

cos

2
1

2
1

1
2

1

1

1

2

1

θ
θ

θ
θ

.  (1.15) 

По формулам (1.15) построены кривые, изображенные на рис.1.7. Естественно, на-
блюдается близость кривых для коэффициентов отражения от полупространства 
(рис.1.3,б) и от слоя толщиной d=λ0/4α. На рис.1.7 дополнительно приведена кривая D, 
которая показывает существенное увеличение отражения от слоя, если он выполнен не 
из равнопроницаемого МД, а из диэлектрика с εr=10, µr=1. 

 
 a b 

Рис.1.7. Коэффициенты отражения (а) и прохождения (б) через четвертьволновый слой МД 
  

Отметим поведение полуволнового слоя равнопроницаемого МД, если α>5. Как 
следует из (1.13), (1.14), такой слой является полнопрозрачным для всех углов падения. 



 Представляет интерес ситуация, когда МД и воздух поменялись местами, т.е. свер-
ху и снизу от слоя воздуха находится равнопроницаемый МД (α1=α3=α>1, α2=1). Вме-
сто эффекта полного внутреннего отражения от полупространства (|R|=1 при θ1≥θ1кр на 
рис.1.4,б) теперь наблюдается эффект просачивания волны через слой (|R|<1  при 
θ1≥θ1кр). Формула (1.13) остается в силе, если в нее подставить: 

  k k C C2 0 1 1 2
2 2

11= = = −, cos , sinθ α θ . 

 Рассматривая коэффициент отражения для критического угла падения (1.5), имеем 
при C2→0: 

 R k d= + − −1 1 4 10
2 2 2/ / ( )α .  (1.16) 

Зависимость (1.16) от толщины слоя d представлена на рис.1.8 для нескольких 
значений параметра α, если sinθ1=1/α. 

 
Рис.1.8. Эффект просачивания через воздушный слой между двумя МД 

 
 Для эффекта просачивания в воздушный слой из диэлектрика плоской перпенди-

кулярно поляризованной волны при sin /θ ε1 11= r  имеем [9] формулу, подобную 

(1.16): 

 R k d r= + −1 1 4 10
2 2

1/ / ( )ε .  (1.17) 

 
Сравнение (1.17) с (1.16) убеждает в справедливости кривых рис.1.8 и для просачи-

вания из диэлектрика в воздушный слой, если взять ε α1r = . По рис.1.8 можно сделать 

вывод, что при заданной относительной толщине слоя k0d минимальное просачивание 
(максимум для |R| ) наблюдается, когда у МД параметр α≥10  либо проницаемость ди-
электрика ε1r≥100.  

 
1.1.4.По известной методике [9] можно исследовать и прохождение волны через 

многослойную МД среду. Пусть на стопу пластинок с проницаемостями αn (n=1,2,...N) 
и толщинами dn падает плоская волна под углом θN+1=θ0, когда сверху и снизу стопы 
расположен воздух (αN+1=α0=1). Известные рекуррентные соотношения [9-11] для 
относительных импедансов (z=Z/Z0) теперь имеют вид: 

 
 z zвх

n
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,= −1 ζ  

 



где  ζn n n вх
n

n n ВХ
njt C z jt C z= − −− −( / ) / ( )( ) ( )1 11 1 , 

 C t tg k dn n n n n= − =−1 2 2
0 0α θ αsin , ( ) . 

Последовательное использование этих формул приведет к выражению для входно-
го волнового сопротивления всей стопы: 

 
 z zвх

N
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Коэффициент отражения от стопы пластинок в воздух есть 
 
 R=(Ф−1)/(Ф+1).  (1.18) 
 
Для электрически тонких слоев, когда 
 
 1>>tn=k0αndn=2παndn/λ0,  
 

функция Ф выражается как 

 Φ = − =
=
∑exp[ ( ( / cos cos / ))]j arctg t C C en n n
n

N
jθ θ ϕ

0 0
1

, 

поэтому для модуля коэффициента отражения имеем |R|=tg(ϕ/2). 
 

1.1.5.Важной является задача о падении на границу МД волнового пучка, который 
представляется [9] интегралом от плоских волн 

 E x z F e dj x jz k0 0
2 2

( , ) ( )= − − −

−∞

∞

∫ ν νν ν .  (1.19) 

Формирование пучка из поля плоской волны происходит за счет пропускания энер-
гии через плоский экран со щелью шириной 2a, расположенный при z=0 (рис.1.9). В 
этой плоскости с использованием (1.19) имеем начальное распределение напряженно-
сти по сечению пучка: 

 E x F e d I xj x0 0( , ) ( ) ( )= =−

−∞

∞

∫ ν νν , 

где спектрально-угловая плотность F(ν)может быть найдена с помощью интеграла Фурье 

 2 00π νF x E x e dxj x( ) ( , )=
−∞

∞

∫ .  (1.20) 

 
Рис.1.9. Падение волнового пучка на границу воздух -равнопроницаемый МД 



Вместо идеализированной модели пучка с П-образным распределением энергии в 
плоскости сечения [9] вводим более реалистическую математическую модель: 

 
 I x A x e A x ej x jxk( ) ( ) ( ) sin= =− −ν θ0 0 0 ,  (1.21) 

 
где амплитуда описывается аналитической функцией 
 

 A(x)=πsh(π/σ)/a[ch(π/σ)+ch(πx/aσ)].  (1.22) 
 
На рис.1.10,а приведены кривые распределения амплитуд, позволяющие учесть 

эффект поперечного расплывания пучка путем выбора в (2.22) соответствующей вели-
чины параметра σ. Подстановка (1.21), (1.22) в (1.20) дает спектрально-угловую плот-
ность 

 F(ν)=σsinξ/sh(ξσ),  (1.23) 
 
где ξ=a(ν−ν0). По формуле (1.23) на рис.1.10,б построены кривые, которые показывают, 
что при σ≥1 функция (1.23) отлична от нуля лишь при −π<ξ<π, т.е. на интервале 
 

 ν1= −π/a+ν0<ν<π/a+ν0=ν2.  (1.24)  
 
С учетом (1.24) интеграл (1.19) приобретает вид: 

 E F e dj x jz k0 0
2 2

1

2

= − − −∫ ( )ν νν ν

ν

ν

.  (1.25) 

 
Рис.1.10. Кривые распределения амплитуд по сечению пучка (а) и его спектрально-угловая плотность (б) 

 
Кроме падающего пучка, описываемого формулой (1.25), из-за скачка проницаемо-

стей (рис.1.9) формируются отраженный и прошедший пучки с напряженностями 
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,  (1.26) 

 E F T( e dT j x jz k= − − −∫ ( ) )ν ν νν α ν
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2

.  (1.27) 

 Подстановка (1.25)-(1.27) в граничные условия при z=h дает зависимости: 
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 Понятие пучка определяется обычно условием, что его поперечный размер а го-
раздо больше длины волны. Если также ограничиться рассмотрением небольших углов 
падения θ0, то из неравенства (1.24) следуют соотношения: 

 0 2 10 0 0< < − <<ν θ λ/ sin /k a , 

 0 2 10 0 0< < − <<ν α θ λ α/ sin / /k a , 

учет которых в (1.28), (1.29) позволяет полагать коэффициенты отражения и прохожде-
ния константами: 
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В фазовых множителях интегралов (1.26),(1.27) можно использовать приближение 
 

 k k k0
2 2

0
2

02− ≈ −ν ν / .  (1.32) 

 
С учетом (1.32) можно переписать (1.25)-(1.27) в виде 
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По сравнению с интегралом I(x) в интеграле формулы (1.33) имеется дополнитель-
но множитель exp(jν2z/2k0), из-за которого в воздухе наблюдается продольная расходи-
мость пучка.  

 Интегралы в формулах (1.33),(1.35) при ν0=0 отличаются тем, что вместо перемен-
ной z в МД действует переменная z/α. Поэтому одна и та же функция определяет моду-
ли напряженностей падающего и прошедшего пучков, т.е. 

 

 E f x z E f x zT0 = =( , ), ( , / )α . 

 
Очевидно, что для указанных на рис.1.11 точек выполняются соотношения 
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Одинаковые приращения амплитуд 
 
f x z f x z f x z f x z( , ) ( , ) ( , ) ( , )' '1 1 2 2

− = −  

 
будут наблюдаться соответственно для двух 
приращений координат z z

1 1 1' − = ∆  и 

z z
2 2 2 1' − = =∆ α∆ . Поскольку тангенс угла 

расходимости пучка с точностью до констан-
ты можно определить как tg c f fϕ1 1 1 1= −( ) /' ∆ , 

то из приведенных соотношений имеем 
tg tgϕ α ϕ2

1
1= − . Таким образом, для волново-

го пучка наблюдается уменьшение в α раз его 
продольной расходимости при переходе пучка из воздуха в равнопроницаемый МД. 

 Удобное для вычислений решение задачи получим с использованием метода пар-
ных производных [3]. По формулам (1.21), (1.22) известен интеграл I(x), что позволяет 
по его производным найти интеграл в формуле (1.33) и получить для поля падающего 
пучка: 
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где использовано разложение 
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Аналогичным образом имеем выражения для отраженного и прошедшего пучков: 
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где с учетом (1.37) обозначены: 
 

 b b b bn
R n

n n
T
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n

2 2 2 21= − =( ) , / α . 
 
Входящие в (1.36),(1.38),(1.39) производные по x находятся по формуле 
 
 I sh f x ax

n
n

( ) ( / ) ( ) /2
22= π π σ , 

 
где с введением обозначений 
 

 γ θ δ π σ π σ= − = =jk a c ch0 0 2sin , / , ( / )  
 
для функций f2n(x) имеем систему линейных уравнений: 
 

 f C c e e en m n
m m m x m x n x

m

n

2 2
2

0

2

−
−

=
+ + − =∑ [ ( ) ]δ δ γδ δ γ .  (1.40) 

 
Рис.1.11. Изменение расходимости пучка при 
переходе через границу скачка проницаемостей 



Благодаря треугольному виду системы (1.40) ее решение трудностей не вызывает. 
Итак, по формулам (1.36)-(1.40) имеем полное решение задачи о воздействии волнового 
пучка на равнопроницаемый МД. 

 
1.1.6. Проведенный анализ позволяет сделать следующие выводы: 
1.При использовании равнопроницаемого МД с плоскими поверхностями скачков 

параметра α все рассмотренные эффекты не зависят от поляризации падающей волны. 
В частности, отсюда следует одинаковость поляризационных свойств для падающей, 
отраженной и прошедшей волн.  

2. Полная прозрачность многослойного равнопроницаемого МД наблюдается при 
нормальном падении волны вне зависимости от количества слоев постоянства парамет-
ра α и величин констант αn. Для сравнения укажем, что известный эффект полного 
прохождения в диэлектрическое полупространство при падении под углом Брюстера 
зависит как от величины εr, так и от поляризации падающей волны. Наличие произвола 
в выборе функции α=α(z) позволяет с помощью равнопроницаемого МД производить 
неотражающее замедление (ускорение) волны под желаемую характеристику скорости 
v(z)=c0/α(z). 

3. Вблизи нулевого угла падения имеется область углов (0≤θ1<30°), которая харак-
теризуется почти полным прохождением волны из воздуха в МД с любым α>1 
(рис.1.3,б). При выходе волны из МД с α>1  в воздух такая область гораздо меньше 
(0≤θ1<θкр) и зависит от величины α (рис.1.4,б). Итак, для указанных областей углов на-
блюдается эффект полнопрозрачного лучепреломления (по закону Снеллиуса (1.2)). 

4. В отличие от непрерывного уменьшения прозрачности диэлектрика при повы-
шении εr (рис.1.5,а) прозрачность равнопроницаемого МД в соответствии с формулой 
(1.4) и рис.1.3,б почти не зависит от α, если α>2. 

5. Действие волнового пучка на равнопроницаемый МД сопровождается его пол-
ным прохождением при нормальном падении на плоскую границу скачка проницаемо-
стей и слабым отражением при наклонном падении, если θ0<30°. Важным фокусирую-
щим эффектом является уменьшение продольной расходимости пучка в α раз при его 
проходе из воздуха в МД с α>1. Полезен будет и обратный эффект увеличения в α раз 
продольной расходимости пучка, нормально падающего из МД в воздух. Если взять 
вместо МД диэлектрик, то использовать на практике аналогичные эффекты не удается 
из-за сильного отражения пучка от границы. 

 
 
1.2. Среды с непрерывно меняющимися проницаемостями 
 
1.2.1.В данном параграфе рассмотрим задачу падения плоской волны из однород-

ного полупространства z<0 на границу z=0 неоднородного равнопроницаемого МД, ха-
рактеризуемого непрерывно дифференцируемой функцией α=α(z). Ради конкретности 
подразумеваем перпендикулярную поляризацию падающей волны и имеем для напря-
женности прошедшего в МД поля E Ey= 0  уравнение 

 
 ′′ + ′′− ′ + =−E E E k z Ex z zα α α1

0
2 2 0( ) ,  (1.41) 

 
где зависимость E от x присутствует лишь при наклонном падении возбуждающей волны.  



 Падающая и отраженная волны (рис.1.1) имеют напряженности электрического 
поля 

 E e jk x z0 0 0 0= − +( sin cos )θ θ ,  (1.42)  
 ER jk x z= − −Re ( sin cos )0 0 0θ θ .  (1.43) 
Для прошедшего поля ищем решение уравнения (1.41) в виде 

 E A z jk x dzT
z

= − + −∫( ) exp[ ( sin sin )]0 0
2 2

0
0

θ α θ ,  (1.44) 

где для A(z) должно выполняться уравнение: 
 ′′ − ′ − + ′ − =A A jk Aq zz z z( sin / ) ( )2 00

2 2
0α θ α α ,  (1.45) 

где  q z jkz( ) sin / sin= ′ −α θ α α θ0
2

0
2 2

0 . 

 Характеристика проницаемостей α(z) по физическим соображениям должна удов-

летворять условиям: 1≤ < ∞ ′ < ∞α α, z . Поскольку общей формулы-решения уравнения 

(1.45) пока нет, ограничимся нахождением приближения, пригодного при малых углах 
падения. А именно, не только для нормального падения, но и при малых θ0 полагаем 
q=0 в левой части равенства (1.45), что позволяет записать 

 A C C jk dz dz
zz

= + −∫∫1 2 0
2 2

0
00

2α α θexp( sin ) .  (1.46) 

Подстановка (1.46) в (1.44) дает представление поля в МД при произвольной функ-
ции α(z), но малых углах падения θ0=sinθ0<<1. После наложения граничных условий 
получаем для входящих в (1.44), (1.46) констант: 

 

 1 2 1 0 0 01
2 2

0 0 2+ = = = + − =R C T C/[ ( ) sin / ( )cos ],α θ α θ ,  (1.47) 

 
где α(0) - начальное значение проницаемостей МД. Формула (1.47) фактически повто-
ряет выражение (1.3). Очевидно, что нормально падающая волна проходит в МД без 
отражения при любом виде α(z). При малых углах падения будет практически отсутст-
вовать отражение, если α(0)>>sinθo. Полезно указанные простые выкладки сравнить с 
непреодолимыми трудностями решения задачи для неоднородного немагнитного ди-
электрика [9-11] с произвольным профилем диэлектрической проницаемости ε=ε(z). 

 Формулами (1.44), (1.46), (1.47) можно также пользоваться и при произвольном 
угле падения, но для МД со слабо меняющейся функцией проницаемостей, когда спра-
ведлив прием «укорочения» уравнения (1.45). При этом для процесса отражения вид 
функции α(z) несущественен, а согласно (1.47) важно только число α(0), если θ0≠0. 
Формула (1.44) для прошедшей волны дает учет зависимости α(z). Например, линей-
ную зависимость  α=az+1 всегда можно сделать функцией медленного изменения в 
слое МД толщиной d. Если числа α(0)=1, α(d) заданы, то a=[α(d)−1]/d. После неслож-
ных операций имеем для интеграла в формуле (1.44): 
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1.2.2. Рассмотрим использование слоя из равнопроницамого неоднородного МД 
как согласующего перехода для наклонно падающей волны. Переход волны через по-
верхность скачка проницаемостей МД без отражения наблюдается при условии полной 
наложимости плоского фронта на плоскую границу или сферического фронта на сфе-
рическую границу. Отражение отсутствует благодаря естественному удовлетворению 
граничных условий: нормальные к границе составляющие векторов напряженностей 
равны нулю, а непрерывность касательных составляющих обеспечивается из-за совпа-
дения величин импедансов по обе стороны от границы. 

 Следует напомнить, что граница двух диэлектриков уже не обладает таким свойст-
вом полной прозрачности даже при нормальном падении волны. Для компенсации от-
ражения требуется либо плавный согласующий переход (например, слой Эпштейна) 
либо многослойное покрытие [9-11]. А при наклонном падении волны на границу двух 
диэлектриков требования к согласующему переходу еще усложняются. Слой же из рав-
нопроницаемого МД имеет для функции α(z) лишь одно требование: наклонно входя-
щая в слой волна должна выходить из него по нормали. 

 На любом участке постоянства проницаемостей α=αc имеем из (1.44), (1.46), (1.47): 
 

 E C jk x jk z c= − −exp( sin sin )0 0 0
2 2

0θ α θm . 

 
Если же этот участок дополнительно обладает большой величиной αc, т.е. αc>>1>sinθ0, 
zαc>>|x|sinθ0, то наблюдаются две нормально проходящих волны: 
 

 E C e C ejk z jk zc c= +−
1 2

0 0α α . 
  
Таким образом, МД, имеющий на входе α(0)=1, а на выходе - участок постоянства 

проницаемостей α=αc>>1, выполняет роль согласующего перехода для наклонно па-
дающей волны. 

 
1.2.3. Несколько иной путь построения решения уравнения (1.41) предложен ранее 

[13], когда в представлении для прошедшей волны  

 E T jk x dzT
z

= − + ∫exp[ ( sin )]0 0
0

θ αβ   (1.48) 

используется вспомогательная функция β(z), удовлетворяющая уравнению Риккати  
 

 α β αβ θ2 2
0

1 2
01 0( ) sin− − ′ − =−jk z .  (1.49) 

 
Коэффициенты прохождения и отражения определяются по формулам  
 

 T R T= + = −2 1 0 10 0/ [ ( , ) / cos ],β θ θ ,  (1.50)  
 
которые имеем после подстановки (1.43), (1.48) в граничные условия на границе z=0. 

Если МД является средой без потерь (Imα=0), то выполнение уравнения (1.49) при 
sin2θ0>0 возможно только при комплексном характере β=βr+jβi, поэтому из (1.49) имеем 
два уравнения: 

  β β αζi r= − ′(ln ) / 2 ,  (1.51) 

 β β α α β ζr i is2 2 2 11= + − + ′− − ,  (1.52) 



где ζ θ= =k z s0
2

0, sin .  

В силу независимости α(z) от угла падения волны получаем 
 

 ′ = − ′′ ′ = ′ ′− −β α β β α βζ ζis r s i s r s0 5 0 251 2 2 2, (ln ) , ( ) , [(ln ) ] , 

 
поэтому из (1.52) следует равенство 
 

 ( ) , [(ln ) ] , [ (ln ) ]β α β α α α βζ ζ ζr s r s r s
2 2 2 2 1 10 25 0 5′ = ′ ′ − − ′′ ′− − − − .  (1.53) 

 
При нормальном падении волны отраженная волна отсутствует при любой функ-

ции α(z), откуда следуют дополнительные требования к βr, βi на границе при θ0→0:  
 
 limβr(0,θ0)=1, limβi(0,θ0)=0.  (1.54) 
 
Дифференциальное уравнение (1.53) определяет разрешенный класс функций 

β β α αζr r s= ′( , , ) , а после подстановки βr в (1.51) и разрешенный класс функций 

β β α αζi i s= ′( , , ) . Учет этих зависимостей в (1.52) приводит к нелинейному дифференци-

альному уравнению для α . Например, решением уравнения (1.53) будет функция 
β θ α ζr = cos / ( )0 , тогда по (1.51) имеем β α αζi = ′ / 2 2 , после чего (1.52) принимает вид 

обыкновенного нелинейного дифференциального уравнения второго порядка 
αα α α αζ ζ′′− ′ + − =15 2 1 02 2 2, ( ) . Решением последнего является [14] функция 

 

 α ζ ζ= + +2 2 50/ [cos ( ) ] ,  (1.55)  
 
где с помощью константы ζ0 на границе ζ=k0z=0 выбирается число 

α ζ0 02 2 5= +/ (cos ) . При получении (1.55) использовано также условие отсутствия 

потерь в среде вида Imα=0. Заметим, что согласно (1.55) рассматриваемый МД имеет 
периодическое изменение проницаемостей в пределах 0,62<α(z)<1,63 (рис.1.12). 

 
Рис.1.12. Вариант профиля проницаемостей как функций продольной координаты 

 
Выбранная функция β θ α α αζ0 0

22= + ′cos / /j  является частным решением уравне-
ния Риккати (1.49), не удовлетворяющим требованиям (1.54). Однако для уравнения 



Риккати известна процедура нахождения общего решения β по частному решению β0 и 
решению u линейного уравнения: 

 β β
θ
α α θ

α
αζ θ
ζ= + = +

− + +
+

′
−0

0

0 0
2 21 1

2

1 1 2 20
/

cos
[

( / cos )
]cosu

C e

j
j  (1.56)  

Выбор константы С производится так, чтобы удовлетворялись условия (1.54), отку-
да имеем: 

 C j= − = − + −1 1 0 0 1 1 0 5 5 2 0 5 20 0 0/ [ ( , )] / [ , ( cos ) , sin ]β ζ ζ .  (1.57)  
 
 Рассмотрение выражений (1.55) - (1.57) на границе (z = 0) и их подстaновка в (1.50) 

дает представление для коэффициента прохождения 

 
1

2

1

2 2

1
5 1

0

2 0

0

2 0

0 0
0 0 0

2

T(

j

θ
θ

α
θ

α θ
θ α α

)
cos sin

cos
cos= + + −







 − − ,  (1.58)  

где граничное значение α0=εr(0)=µr(0) характеристики МД можно задать в пределах 
0,62<α0<1,63. Если бы вместо неоднородного был однородный МД с εr=µr>1, то зави-
симость коэффициента прохождения от угла падения была бы в соответствии с (1.3). 

Особенно наглядно различие между поведением неоднородного МД и однородной 
cреды в случае плавного перехода от вакуума к МД при α0=1. При этом однородный 
МД в силу εr=µr=1 не меняет условия прохождения волны, ибо согласно (1.3) имеем 
T0(θ0)=1 при любом угле падения. Однако неоднородный МД пропускает и отражает 
наклонно падающую волну по (1.58) с учетом угла падения: 

 
 T(θ0)=1/[1+j0,24(−cosθ0+1/cosθ0)], R=T−1. 
 
1.2.4. Ранее предполагалась независимость характеристики равнопроницаемого МД  

α(z) от угла падения. Сейчас откажемся от этого допущения и рассмотрим особенности 
волнового процесса, когда среда специально подготовлена под некоторый угол падения 
θ0. Заметим, что такая постановка задачи навеяна известным эффектом Брюстера, кото-
рый существует при взаимной увязке величин угла падения и, например, диэлектриче-
ской проницаемости стекла. 

 Пусть в (1.44), (1.45) функция α(z,θ0) выбрана как решение дифференциального 
уравнения 

 ′ = − −α α α θz jk2 0
2 2

0sin .  (1.59) 

 
Поскольку (1.59) является уравнением с разделяющимися переменными, то легко 

найти, что 
 α(z,θ0)=sinθ0/ch[2k(z+z0)sinθ0],  (1.60) 

 
где z0-произвольная константа. Подстановка (1.59) в (1.45) упрощает его: 
 

 ′′ − =A k Az 2 00
2 2

0sin θ , 
 
что позволяет сразу записать решение 
 

 A T k z= −exp( sin )2 0 0θ .  (1.61) 
 



С учетом (1.60),(1.61) имеем для прошедшей в МД волны: 

 E
T k z

ch k z
eT jk x=

− −exp( sin )

( sin )
sin2

2
0 0

0 0

0 0
θ

θ
θ ,  (1.62) 

где из граничных уравнений  
 

 1 1 2 00+ = − = −R T, R j tg Tθ α/ ( )  
 

получаем для коэффициентов прохождения и отражения 
 

 T R j ch k z= + = −1 2 1 2 2 0 0 0 0/ [ ( sin ) / cos ]θ θ .  (1.63) 
 
Согласно (1.62) при падении волны под углом θ0, совпадающим по величине с θ0, 

входящим в характеристику равнопроницаемого МД, в последнем возникает неодно-
родная плоская волна, бегущая строго вдоль границы z=0. Амплитуда волны с ростом z 
уменьшается от комплексной величины T, определяемой по (1.63), до нуля. В соответ-
ствии с (1.63) наблюдается также полное отражение, ибо  

 
 R=exp[j2arct(ch(2k0z0sinθ0)/cosθ0)]. 
 
Среда с характеристикой (1.60) является нереализуемой в силу того, что α(z,θ0)<1. 

Поэтому данный пример имеет методическое значение. 
 
1.2.5. Интересен процесс в виде волны, скользящей вдоль плоской границы между 

однородной средой (z<0) и неоднородным МД (z>0). В однородной среде это волна 
 
 E E e Z Hy

jk x
z

0
0

00= = =− ,  (1.64) 

 
а в МД поле зависит от двух координат ζ=k0z и x: 

 E x z E z e d em
jk x jk x( , ) ( ) exp( )= = −− −∫0 0

0

αβ ζ
ζ

,  (1.65) 

где α(z) - характеристика МД, которая определяется через некоторую вспомогательную 
функцию β(ζ): 

 α ζ β β β βζ ζ( ) [ ( ) ] / ( )= ′ + ′ + + +2 2 24 1 2 1 .  (1.66) 

 Нетрудно проверить, что при любой функции β(ζ) выражения (1.65), (1.66) обес-
печивают выполнение уравнения (1.41). На границе z=0 условия E E E Ex x

0 0= ′ = ′, ( )  
удовлетворяются согласно (1.64), (1.65) автоматически. Для выполнения условия 
0 00= =H Hx x ( )  достаточно брать функцию β(ζ), проходящую через нуль. Тогда по 

(1.66) имеем характеристику проницаемостей α=α(z), а по (1.64), (1.65) - волновой про-
цесс в виде плоской волны с разным поведением при z<0 и z>0. В однородной среде 
амплитуда постоянна, а в неоднородном МД ее распределение может быть весьма раз-
нообразным. Подстановка (1.66) в (1.65) дает для амплитуды выражение 

 E dm( ) ( ) exp[ ( ) / ( )]/ζ β β β β ζ β
ζ

ζ= + − ′ + + +− ∫1 4 1 2 12 1 4

0

2 2 2 .  (1.67) 



Наложение на функцию α(z) условия физической реализуемости приводит согласно 
(1.66) к требованию ′ + ≥β β βζ ( )1 2 4  при β(0)=0. Скоростью возрастания β(ζ) при росте  ζ 

можно распорядиться так, чтобы после некоторого расстояния L можно было считать 
амплитуду (1.67) пренебрежимо малой: 

 
 Em(L)>Em(x)≈0 при x>L.  (1.68) 
 
Для составляющих вектора напряженности магнитного поля в МД имеем 
 
 Hz=E(x,z)/Z0α(z), Hx=jβ(z)E(x,z)/Z0. (1.69) 
 
В случае необходимости указанные результаты можно развить и для случаев, когда 

границей области постоянства амплитуды на фронте x=C является не прямая z=0, а лю-
бая криволинейная линия.  

 С использованием формул (1.64) - (1.69) представим поле частично однородной 
плоской волны в прямоугольной металлической трубе со стенками z=±L и y=0,a: 

 
 E x z E z em

jk x( , ) ( )= − 0 ,  (1.70) 
 
где МД занимает области −L<z<−1, 1<z<L, так что 

 E dm
k l

( ) ( ) exp[ ( ) / ( )]/ζ β β β β ζ β
ζ

ζ= + − ′ + + +− ∫1 4 1 2 12 1 4 2 2 2

0m

. 

В средней части трубы при -l<z<l имеем воздух, поэтому амплитуда есть Em=1. Для 
примера укажем одну конкретизацию формул (1.66) - (1.68): 

 β ζ α ζ ζ= = + + + +b b b b b, [ ( ) ] / ( )2 2 2 2 24 1 2 1 , 

 L k L b b E b em0 0
1 2 2 0 250 5 0 25 1= = + + = +− − −( , , ) / , ( ) ,,ζ ψ  

 ψ ζ
ζ

ζ

ζ ζ
= + + +

+ + −

+ + +
−

−

−
0 25 0 25

0 25 0 5

0 25 0 5
2 2

0

2 2

2 2 0
. , ln

. ,

. ,
b

b

b
. 

 При достаточно большом значении параметра b имеем для проницаемостей 

уменьшение от α(0)≈b до α(L0)=1, где L b0 1≈ / . Амплитуда напряженности поля 

(1.65) при изменении ζ  от 0 до L0 падает от 1 до 1 / b  (рис.1.13). Свойства волны 
(1.70) в волноводе необычны: фазовая скорость не зависит от частоты, не вводится по-
нятие критической длины волны, наблюдается одномодовый режим передачи. 

 
1.2.6. Теперь можно сформулиро-

вать общие принципы синтеза харак-
теристики МД α(z) на основе полу-
ченных формул. С ростом угла паде-
ния θ0 от 0 до π/2 увеличивается отра-
жение и ослабевает прохождение вол-
ны в МД. По сравнению с однород-
ным МД использование неоднородно-
го МД позволяет получать желаемую 
характеристику прохождения Т(θ0) за 

 
Рис.1.13. Заполнение металлической прямоугольной 
трубы двумя слоями МД и воздухом между ними 



счет синтеза соответствующей характеристики МД α=α(z). 
Для решения поставленной задачи синтеза необходимо по функции 

T( jθ θ ψ θ0 0 0) ( ) exp[ ( )]= Φ  согласно (1.50) и (1.54) получить вначале выражения: 

 β θ θ ψ θ θr ( , ) [ ( ) cos ( )]cos0 1 20
1

0 0 0= − + −Φ , 

 β θ θ θ ψ θi ( , ) ( ) cos sin ( )0 20
1

0 0 0= − −Φ ,  

выполняющие роль начальных условий для функций βr(α,s), βi(α,s), определяемых как 
решения дифференциальных уравнений (1.53) и (1.51). Подстановка этих функций в 
(1.52) дает для нахождения характеристики α=α(z) необходимое уравнение, имеющее, 
например, решение (1.55). Волна в МД описывается по (1.48), (1.51): 

 E x z E z em
j x z( , ) ( ) ( , )= − ϕ , 

 E z dm i r r( , ) ( ) exp( ) ( ) ( , ) / ( , )θ θ β α ζ θ β θ β ζ θ
ζ

0 0
0

0 0 00= =∫Φ Φ , 

 ϕ θ θ ψ θ β α ζ
ζ

( , , ) sin ( )x z k x dr0 0 0 0
0

= − + ∫ . 

1.2.7. Уместно рассмотреть еще задачу о нормальном падении волнового пучка на 
МД с границей z = 0. Теперь вместо (1.42) для падающей волны справедливо 

 E x z F e d
j x z k

0
0
2 2

( , ) ( )
( )

=
−∞

∞ − −

∫ ν ν
ν ν

,  (1.71)  

где с помощью спектральной плотности F (ν ) задается поведение амплитуды поля от-
носительно x. На границе z= 0 для интеграла Фурье 

 E x F e dj x0 0( , ) ( )=
−∞

∞

∫ ν νν  

есть формула обращения 

 F E x e dxj x( ) ( , )ν
π

ν= −

−∞

∞

∫
1

2
00 .  (1.72) 

Например, для волнового пучка с амплитудой 

 E x
a x a

x a
0 0

1

0
( , )

, ,

,
=

− < <
>





 

спектральная плотность по (1.72) равна F a( ) sin /ν ν νπ= . Для отраженной волны 

 E x z R e dR j x z k( , ) ( ) ( )= + −

−∞

∞

∫ ν νν ν0
2 2

,  (1.73) 

а для поля в МД  

 E T( j x k z z dz dT
z

= − −








∫∫

−∞

∞

ν ν ν α β ν ν) exp ( ( ) ( , ) )0
2 2

0

,  (1.74) 

где для функции β( )z  должно выполняться дифференциальное уравнение Риккати 

 

 ′ = − + − −− −β α ν β ν α α νz jk k j k k k0
2

0
2 2 2

0
2 2

0
2

0
21 1( ) / .  (1.75) 

 
Подстановка (1.71), (1.73), (1.74) в граничные условия дает аналоги равенств (1.50): 
 

 T( F R T( Fν ν β ν ν ν ν) ( ) / [ ( , )], ( ) ) ( )= + = −2 1 0 ,  (1.76) 



 
Аналогами формул (1.51), (1.52) являются уравнения 

 β β β ασ σ ν νζi r r k= − ′ = − −/ , ( ) ,2 1 2
0

2   (1.77) 

 β β αβ σ ν α σζr i i k2 2 1 2
0

2 21= + ′ + −− − −[ ( ) ] ,  (1.78)  

откуда подобно (1.53) имеем равенство для β r : 
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.  (1.79) 

Алгоритм синтеза α(z) состоит из следующих этапов: 
1.Для заданного падающего и желаемого отраженного волновых пучков по (1.72) 

определяем их спектральные плотности F(ν), R(ν), по которым находим граничное зна-
чение функции β: 

 β(0,ν)=(F−R)/(F+R).  (1.80) 
 
 Согласно формуле (1.80) определяющим является отношение функций R(ν)/F(ν), а 

не их раздельное задание. 
2. Вспомогательные функции βr(α,ν),βi(α,ν) находятся как решения граничных за-

дач (1.79), (1.80) и (1.77), (1.80). 
3. Подстановка βr,βi в (1.75) приводит к конкретному виду дифференциального 

уравнения для α (z), решение которого и будет искомой характеристикой неоднород-

ного МД. Например, выбор функций β α ζ β α α νζr i k= = ′ − −1 2 12 2
0

2/ ( ), / приведет к МД 

с характеристикой (1.55). 
 
 1.2.8. Сделаем краткие выводы по полученным результатам. 
 1. Неоднородный равнопроницаемый МД пропускает нормально падающую 

волну без отражения при любом виде функции α=α(z), характеризующей продольную 
неоднородность. Поиск характеристики α(z), обеспечивающей заданную угловую изби-
рательность прохождения (отражения), выполняется без нарушения условия полной 
прозрачности для нормально падающей волны. 

 2. При малых углах падения вид функции α(z) не сказывается на коэффициентах 
отражения и прохождения, которые зависят только от начальной величины проницае-
мостей α(0). 

 3. Равнопроницаемый неоднородный МД со слабо меняющейся функцией α(z) 
для отраженной волны выступает в роли однородного МД, характеризуемого числом 
α(0) при любых углах падения. 

 4. Анализ и синтез неоднородного равнопроницаемого МД гораздо проще и ре-
зультативней соответствующих теоретических методов для неоднородных диэлектри-
ков. Это объясняется, повидимому, тем, что равнопроницаемый МД минимально вме-
шивается в структуру волны при ее распространении, чего нельзя сказать о неоднород-
ном диэлектрике. 

 5. Если характеристика проницаемостей имеет в качестве параметра угол паде-
ния, то падающая под этим углом волна возбуждает в МД скользящую вдоль границы 
z=0 волну. 

6. Существует возможность задавать произвольное распределение амплитуд на фа-
зовом фронте волны за счет выбора функции α(x,y), характеризующей поперечную не-



однородность, когда фазовый множитель есть exp(−jk0x). В частности, реализуется вол-
на с областями кусочного задания амплитуд на фронте. 

 
 
1.3. Сферические волны в равнопроницаемых магнитодиэлектриках 
 
1.3.1. Для плоской электромагнитной волны известно [12], что ограничение разме-

ров фронта или изменение амплитуды относительно поперечных координат приводит к 
появлению продольных составляющих векторов поля. Наблюдается это также для сфе-
рических волн, которые имеют и конечные по размерам сферические фронты и непо-
стоянство амплитуды и, наконец, ненулевые радиальные составляющие напряженно-
стей Er и (или) Hr. 

 Указанный квазипоперечный характер сферической волны, а также понятие импе-
данса «привязаны» к составляющим векторов напряженностей поля, а не векторного 
потенциала, традиционно используемого при анализе [9]. Поэтому будем далее зани-
маться непосредственным решением системы уравнений Максвелла для составляющих 
векторов напряженностей [1,3]. Заметное упрощение выкладок достигается, если ис-
пользовать модифицированные сферические координаты, когда вместо обычных пере-
менных 

 θ ϕ= + = = + +arcsin( / ), ( / ),x y r arctg y x r x y z2 2 2 2 2  

фигурируют β=lntg(θ/2),ϕ,r, а также используются комплексная координата γ=β+iϕ и 
бинарные напряженности [3] 
 

 E=r(Eϕ+iEβ)/chβ, H=r(Hϕ+iHβ)/chβ, 
 
составленные из поперечных составляющих. Тогда уравнения Максвелла имеют вид: 

 2 2 2 2ch E r j H i r Er r rβ ωµγ′ = − − ′( ) , (1.81) 

 2 2 2 2ch H r j E i r Hr r rβ ωεγ′ = − ′( ) ,  (1.82) 

 ′ + = ′E ij H i Er rωµ γ2 ( ) ,  (1.83) 

 ′ − = ′H ij E i Hr rωε γ2 ( ) .  (1.84) 

В системе уравнений (1.81) - (1.84) взаимосвязаны четыре функции, и возникает 
проблема получения для них раздельных уравнений, Это имеет место для радиальных 
составляющих, если ввести обозначение u=r2Er (или u=r2Hr), продифференцировать 
(1.81) по r, учесть (1.82) и равенство (1.83), продифференцированное по γ . Оконча-
тельно получаем: 

 r u k u ch u r u k u ch u ur r
2 2 2 2 2 24 0( ) ( ) ( )′′+ + ′′ = ′′+ + ′′+ ′′ =β βγγ β ϕ .  (1.85) 

 
Уравнения для поперечных составляющих образуют систему 
 
 ( ) ( )r E ch E k r E rij Hr r

2 2 2 24 2′ ′ + ′ ′ + = −β ωµγ γ ,  (1.86) 

 ( ) ( )r H ch H k r H rij Er r
2 2 2 24 2′ ′ + ′ ′ + =β ωεγ γ .  (1.87)  

 
В принципе методом подстановки можно из (1.86), (1.87) получить два раздельных 

уравнения для E и H, однако они будут уравнениями четвертого порядка громоздкого 
вида. 



 Большой интерес представляет анализ импедансного соотношения в сферической 
волне. Как показано в [3], в уравнении связи между поперечными составляющими 
напряженностей  

 E=iZ0H+σ=iZ0H(1+σ0)  (1.88) 
 

необходимо учитывать добавку σ, определяемую наличием радиальных составляющих 
напряженностей. Действительно, подстановка (1.88) в (1.81) - (1.84) приводит к двум 
уравнениям для σ: 

 
− ′ = + ′ + + ′

′ − = ′ + ′
2

2 2

2 2 2 2
0

2

0

ch i jkr E r E j r H Z r H

jk Z H i E
r r r r r r

r r r

βσ ωµ
σ σ

γ

γ γ

[ ( ) ] ( ) ,

( ) ( ) .
  (1.89) 

Ввиду убывания Er,Hr как 1/r2 роль добавки σ в (1.88) неуклонно снижается с ростом 
r, однако пренебрегать величиной σ нельзя вблизи тех углов θ,ϕ, где E, H устремляются 
к нулю. Если это не учитывают и формально полагают σ=0 при всех углах θ,ϕ, то урав-
нениями (1.86), (1.87) в теории излучения пользоваться некорректно, так как при σ=0 
они описывают строго поперечную сферическую волну, направляемую вдоль бесконеч-
но протяженных конических проводников. 

 Для излучателей электрически малых размеров - мультиполей n - порядка свойства 
добавки σ в уравнении (1.88) можно указать при всех r>0. Ради простоты ограничимся 
случаем Er≠0,Hr=0. Общее решение уравнения (1.85) представляем в виде 

 
 r2Er=u=e−jkrUn(r)Fn(θ,ϕ),  (1.90) 

где  U
a

kr
a

j n q

q n qn

q

q
q

n

q

q

q= =
+
−=

−

∑ ( )
,

( )!

!( )!
,

0

1

2
  (1.91) 

 F b P m thn m n
m

m

M

= = = −
=
∑ ( ) cos , cosξ ϕ ξ θ β

0

,  (1.92) 

а для Pn
m ( )ξ , как для присоединенных функций Лежандра, справедливо уравнение 

 
 ′′ − − ′ + + − − =P P n n mξ ξξ ξ ξ( ) [ ( ) / ( )]P1 2 1 1 02 2 2 . 

 
Числа bm,M в (1.92) могут выбираться из дополнительных соображений. Заметим, 

что представление для Er будет иметь при a0 множителем r−2. 
 Характер поведения E, H относительно расстояния r определяется после подста-

новки (1.90) в (1.81), (1.82): 
 H e U rjkr

n n= − ( ) ( , )Φ β ϕ ,  (1.93) 

 E e U ijjkr
n r n= ′−( ) /Φ ωε ,  (1.94) 

 
где Φn  и функция Fn, известная по (1.92), связаны равенством 
 

 − ′ = ′ =( ) ( )Φ Φn n nch j Fξ γβ ωε2 2 .  (1.95) 

 
Подстановка (1.93), (1.94) в (1.88) позволяет найти и явное представление для отно-

сительной добавки 

 σ0
2 1

1 0

=
′
= − − +

=

−

=
∑ ∑j U

kU
j kr a kr a krn r

n
q

q

q

n

q
q

q

n( )
( ) ( ) / ( ) ,  (1.96) 



где числа aq известны по формуле (1.91). Итак, добавка σ0 в импедансном равенстве 
(1.88) одинакова для всех точек данной сферы и уменьшается при kr>1 не медленнее, 
чем (kr)−2. Например, для поля электрического диполя Герца (n=1) по (1.91), (1.96) имеем: 
 

 σ0= −(kr)−2/[1−j(kr)−1].  (1.97) 
 
Очевидно, что найдется такая сфера r=r0, чтобы в (1.88) можно было положить при 

r≥r0: 
 1+σ0≈1 при |σ0|≤δ,  (1.98) 

 
где δ- заданная величина ошибки, Условия (1.98) определяют возможность рассмотре-
ния квазипоперечной сферической волны как поперечной волны с традиционной свя-
зью между поперечными составляющими: E=iZ0H. Например, для поля диполя Герца 
согласно (1.97), (1.98) имеем эту возможность при 

 kr0 1≥ / δ .  (1.99) 
 
1.3.2.Рассмотрим далее задачу о поле, создаваемом диполем Герца, расположенном 

при r=0, когда сфера r=r0 разграничивает шаровые области равнопроницаемого МД с 
различными проницаемостями: при 0<r<r0 имеем α=α1, а при r0<r<∞ проницаемости 
равны α=α2. Составляющие напряженностей первичного поля есть 

 H pjk j e f ej j
ϕ

ζ
ϕ

ζζ ζ θ ζ0
1
2

1
1

1
2

1
1 1= − =− − − −( ) sin ( ) , 

 E pjZ k j e f ej j
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0 1

2
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2
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1 1= − − =− − − − −( ) sin ( ) , 

 E pZ k j e f er
j

r
j0

0 1
2

1
2

1
3

12 1 1= − =− − − −( ) cos ( )ζ ζ θ ζζ ζ ,  (1.100) 

где k k k r1 1 0 1 1= =α ζ, ,  p - электрический момент диполя. Вторичное поле, обязанное 
неравенству α1≠α2, только при определенных условиях будет состоять из одной отра-
женной и одной прошедшей волн с напряженностями, подобными напряженностям 
(1.100) первичного поля. Покажем, что это будут условия типа (1.99). С учетом обозна-
чений в формулах (1.100) для отраженной волны берем равенства 

 H Rf j k r Rf jR
ϕ ϕ ϕζ ζ ψ= − =( ) exp[ ( )] exp( )1 1 1 0 12 , 

 E Rf j E Rf jR
r
R

rθ θ ζ ψ ζ ψ= − = −( ) exp( ), ( ) exp( )1 1 1 1 ,  (1.101) 

где R - коэффициент отражения, а для прошедшей волны - выражения 
 H Tf j k r k r Tf jT

ϕ ϕ ϕζ ζ ψ= − − + =( ) exp[ ( )] exp( )2 2 2 0 1 0 2 , 

 E Tf j E Tf jT
r
T

rθ θ ζ ψ ζ ψ= =( ) exp( ), ( ) exp( )2 2 2 2 .  (1.102) 

На границе r=r0 должны удовлетворяться условия как для касательных составляющих: 
 

 H H H E E ER T R T
ϕ ϕ ϕ θ θ θ
0 0+ = + =, ,  (1.103) 

 
так и для нормальных составляющих: 
 

 α α1
0

2( )E E Er r
R

r
T+ = .  (1.104) 

 
Подстановка (1.100) - (1.102) в (1.103) дает систему уравнений 
 
 1+R=Tt1, 1−R=Tt2,  (1.105) 
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Постановка же радиальных составляющих из (1.100) - (1.102) в (1.104) дает: 
 
 cosθ(1−R)=Tt1cosθ.  (1.106) 
 
Возникает проблема совместности уравнений (1.105), (1.106), что обеспечивается 

при t1≈t2, откуда имеем требование: 
 r k r k0 0 0 0 1α α δmax min /> ≥ ,  (1.107) 
 

которое совпадает с условием (1.99), рассматриваемом для случая, когда αmin есть наи-
меньшая из двух (α1,α2) проницаемостей. При выборе для равнопроницаемого МД гра-
ницы r=r0 скачка проницаемостей согласно (1.107) не только обеспечивается совмест-
ность (1.105), (1.106), но создаются условия неотражающего прохождения волны через 
границу, ибо R=0, T=1. 

 Формула (1.106) подсказывает, что можно не накладывать на радиус r0 требования 
(1.107), если рассматривать поле вблизи угла θ=π/2, где наблюдается нуль продольной 
(радиальной) составляющей вектора напряженности. Очевидно, что нулевое отражение 
при переходе через сферическую границу должна иметь волна от ненаправленного 
(изотропного) излучателя, который в электромагнитном варианте (в отличие от акусти-
ческого) может быть реализован лишь как квазиизотропный. 

 
1.3.3.Перейдем к постановке новой задачи: определить такую совокупность муль-

типолей, чтобы создаваемое ими вместе первичное электромагнитное поле было бы 
сферической волной от почти ненаправленного (квазиизотропного) излучателя.  

 В соответствии с (1.90) - (1.95) сферическая волна, создаваемая суммой мультипо-
лей, имеет напряженности 

 rH j e C U r P n njkr
n n n

n

N

ϕ θωε θ= − ′ +−

=
∑ ( ) (cos ) / ( )1

1

,  (1.108) 

 rE jke C U jk U P n njkr
n n nr n

n

N

θ θ θ= − + ′ ′ +− −

=
∑ ( ) (cos ) / ( )1

1

1 ,  (1.109) 

 r E e C U r Pr
jkr

n n n
n

N
2

1

= −

=
∑ ( ) (cos )θ ,  (1.110) 

где Cn - константы, определяющие электрические моменты мультиполей. Формулы 
(1.108) - (1.110) записаны для случая независимости поля от координаты ϕ, когда ис-
пользуются обычные функции Лежандра Pn(ξ)=Pn(cosθ). Путем подстановки (1.91), 
(1.93), (1.94) в (1.83) можно показать, что кроме формулы (1.93) есть также соотноше-
ние Φn nP j n n= − ′ +sin / ( )θ ωεθ 1 , которое учтено в (1.108), (1.109). 

 Задача состоит в нахождении таких чисел Cn, чтобы относительная добавка σ0 в 
импедансном равенстве (1.88) была бы почти всюду нулевой, за исключением поляр-
ных точек θ=0, θ=π/2 на сфере некоторого радиуса r=r0. При этом зависимости (1.108), 
(1.109) с точностью до множителя Z0 оказываются одинаковыми, что приводит к по-
вторяемости граничных уравнений (1.103). Поэтому в силу равенства 1+R=1-R, т.е. 
R=0, происходит неотражающее прохождение волны через границу r=r0 скачка прони-



цаемостей. Кроме того, из-за σ0=0 касательная составляющая напряженности Eθ ста-
новится полной напряженностью, имеем выполнение граничного условия (1.104) в ну-
левом варианте: E E Er r

R
r
T0 0= = = . 

 Вместо проверки неравенства (1.98) сразу будем полагать σ0=0 и находить Cn для 
предельного случая N→∞, когда в (1.108) - (1.110) суммы превращаются в ряды. Потре-
буем при 0<θ<π выполнения равенства 

 C U r P n nn nr n
n

′ ′ + =
=

∞

∑ ( ) (cos ) / ( )0
1

1 0θ θ .  (1.111) 

В силу комплексного вида функций (1.91), т.е. представления ′ = +U V r jV rnr nr ni( ) ( )0 0 , 
коэффициенты Cn также должны быть комплексными: Cn=Cnr+jCni. Равенство (1.111) 
будет выполнено, если подобраны вещественные константы Dn, исходя из условий: 

 D P D п иn n
n

( ) рξ ξ= − − < <
=

∞

∑ 0
1

1 1,  (1.112) 

а затем Cnr,Cni найдены по Dn: 
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Доопределим требования (1.112) поведением ряда при ξ=±1 как для δ-функции: 

 D Pn n
n

( ) ( ) ( )ξ δ δ= − −
=

∞

∑ 1 1
0

, 

что позволяет иметь: 
 Dn=2[1−(−1)n]/(2n+1)=4/(2n+1),  (1.114) 

 
где n- нечетное число. Итак, числа Cnr,Cni находятся по (1.113), (1.114), где также со-
гласно (1.91) используются соотношения: 
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 q - четное.  

Нетрудно теперь показать, что выполнение условия (1.111) нулевой добавки σ0 в 
импедансном равенстве (1.88) сопровождается квазиизотропностью излучения, т.е. не-
зависимостью Eθ и Hϕ от θ при 0<θ<π. Для этого учитываем, что кроме (1.111) действует 
также равенство: 

 C U r P n nn nr n
n

′ ′′ + =
=

∞

∑ ( ) (cos ) / ( )0
1

1 0θ θ .  (1.115) 

Из (1.108), (1.109), (1.115) получаем: 

 rH rE
r rϕ θ θ θ
″ = ″ =0 0, . 

Во всех точках сферы r=r0, кроме полюсов, отсутствует радиальная составляющая 
напряженности, ибо по (1.110), (1.111), (1.115) имеем ( )r E er

jkr
r

2 0′ = . Этот же результат 
может быть получен подстановкой σ0=0 в уравнения (1.89). 

 
1.3.4. Продолжим исследование прохождения сферической волны через сфериче-

скую границу раздела r=r0, когда она разделяет однородный МД и неоднородный МД с 
характеристикой α=α(r,θ,ϕ). Покажем лишь принципиальную возможность применения 



метода разделения переменных для уравнений поля в случаях продольной неоднород-
ности с α=α(r) и поперечно - продольной неоднородности вида α=α0(θ,ϕ)/r. В уравне-
ниях (1.81) - (1.84) учитываем равенство εr=µr=α и получаем аналог дифференциального 
уравнения (1.85), но для неоднородной среды: 

 

 r u k r u ch ur r
2 1

0
2 2 2 14 0( ) ( )α α β α γ γ

− −′ ′ + + ′ ′ = .  (1.116) 

 
Вместо равенств (1.86), (1.87) теперь действуют уравнения 
 
 ( ) ( )α α β α ωµγ γ

− −′ ′ + ′ ′ + = −1 2 1 2
0
2 2

04 2r E ch E k r E rij Hr r , 

 ( ) ( )α α β α ωεγ γ
− −′ ′ + ′ ′ + =1 2 1 2

0
2 2

04 2r H ch H k r H rij Er r .  (1.117) 

 
В частности, из (1.117) для напряженности магнитного поля с осевой симметрией 

следует уравнение 
 r rH ch ch H ch k r Hr r[ ( ) ] [ ( / ) ]α β α β β αϕ ϕ β β ϕ

− −′ ′ + ′ ′ + =1 1 2
0
2 2 0 .  (1.118) 

 Если характеристика проницаемостей есть α=α(r), то поиск решения уравнения 
(1.116) в виде u=A(r)B(θ,ϕ) приводит к соотношениям 

 
 − ′ ′ = = ′ ′ +−4 2 2 1

0
2 2ch B B m r A A k rr rβ α α αγ γ( ) / ( ) / ,  (1.119) 

 
где m - постоянная разделения. Заметим, что получающиеся из (1.119) обыкновенные 
дифференциальные уравнения имеют хорошо изученные решения. 

 В случае поперечно - продольной неоднородности, когда α=α0(θ,ϕ)/r, имеем: 
 
 4 0

2
0 0

2
0
2α β α αγ γch B B k m r rA Ar r( / ) / ( ) /′ ′ + = = − ′ ′ .  (1.120) 

 
По крайней мере, для осесимметричного поля, когда α0=α0(β), из (1.120) получаем 

раздельные обыкновенные дифференциальные уравнения для B(β),A(r).  
 Если излучатель является квазиизотропным (п.1.3.3), то в уравнениях (1.116), 

(1.119) нет необходимости. Для всех точек сферы, кроме полюсов, уравнение (1.118) 
для напряженности упростится к виду 

 
 r rH k r Hr r[ ( ) ]α αϕ ϕ

− ′ ′ + =1
0
2 2 0 . 

Решение этого равенства есть 

 H Cr jk r dr
r

ϕ α= ±− ∫1
0

0

exp[ ( ) ]  

при произвольной функции α(r) для продольной неоднородности проницаемостей МД. 
Очевидно, что указанная сферическая волна согласуется с поперечной волной в воздухе 

 H Cr jk r a r dr
a

ϕ α= ± − +− ∫1
0

0

exp[ ( ( ) )] , 

если граница между средами есть сфера r=a. Существенно, что выбор радиуса а не зави-
сит от длины волны. 

 
 



1.3.5. Подведем некоторые итоги: 
 
1. На прохождение сферической волны через сферическую границу скачка прони-

цаемостей двух равнопроницаемых МД сказывается наличие радиальных составляю-
щих напряженностей поля. 

2. Уменьшение роли радиальных составляющих и соответственно создание усло-
вий для полного прохождения сферической волны возможно при достаточном удале-
нии сферы r=r0 от излучателя (первый вариант импедансно согласованного волнового 
процесса). 

3. Полное прохождение через сферическую границу произвольно малого радиуса 
обеспечивается для волны квазиизотропного излучателя (второй вариант импедансного 
согласования). 

4. При согласовании по первому или по второму вариантам наблюдается неотра-
жающее прохождение сферической волны в неоднородный МД с произвольной функ-
цией α=α(r) продольной неоднородности. 

5. Указанные условия импедансного согласования необходимы как для полного 
прохождения сферической волны из воздуха в МД, так и для перехода из МД в воздух.  

 
1.4. Плоские и сферические волны с непараллельными фронтами 
 
1.4.1. Плоские и сферические волны, рассмотренные выше, являются волнами с 

плоскопараллельными и сферопараллельными фронтами. Кроме них, в неоднородных 
равнопроницаемых МД, возможны еще четыре класса плоских и сферических волн [1-
5]. Так, плоскоосевые волны имеют фазовые фронты в виде полуплоскостей, вращаю-
щихся вокруг оси z.. Интерес представляют и три новых класса сферических волн: сфе-
роточечные, сфероосевые, бисферические. Для них характерно, что волновой фронт, 
будучи сферой переменного радиуса, при своем движении, либо закреплен в одной точ-

ке x=y=z=0 либо закреплен по оси - окружности ρ = + =x y a2 2 , либо перемещается от 
точки ρ=0, z= −a до точки ρ=0, z=a. Эти волны можно еще называть кольцевыми, по-
скольку движение энергии происходит вдоль окружностей (по кольцу или его части). 

 Для описания плоскопараллельных и сферопараллельных волн адекватными явля-
ются системы координат с плоскопараллельным и сферопараллельным базисами (ПБI, 
СБI). Все выкладки становятся аналогичными для четырех классов волн с непараллель-
ными фронтами, если для их анализа используются соответствующие координаты: 
плоскобазисные (ПБII) и три класса сферобазисных координат (СБII, СБIII, СБIV). Да-
лее основные свойства новых волн будут представлены без математических подробно-
стей, которые можно найти в [1-4]. 

 
1.4.2. Плоскоосевые волны имеют фазовые фронты типа листов раскрытой книги 

(рис.1.14,а), движение энергии идет вдоль окружностей ρ=C. Закручивание линий век-
тора Пойнтинга происходит за счет переменной скорости движения v=c0=ρ0/ρ, посколь-
ку проницаемости МД обратно пропорциональны расстоянию от оси z:  

 
 α(ρ)=εr=µr=ρ0/ρ,  (1.121) 
 

где ρ0 - величина некоторого фиксированного радиуса (рис.1.14,б).  



 
Рис.1.14. Полуплоскости - фазовые фронты плоскоосевой волны (а)  

и проницаемости соответствующего МД (б) 
 

При ρ<ρ0 имеет место область замедления, а при ρ>ρ0 - об-
ласть ускорения. Ввиду невозможности переноса энергии 
волной со скоростью большей, чем скорость света c0, об-
ласть ускорения должна быть заполнена идеальным провод-
ником. Если разместить МД с проницаемостями (1.121) в 
пространстве между двумя коаксиальными металлическими 
цилиндрами, то напряженности поля равны 
 

 E E Z H U ez
jk= = − = − − −

ρ
ρ ϕρ ρ0 2 1

1 0 2( ) ,  

 
где U- электрическое напряжение между цилиндрами. Кро-
ме Т-волн, когда Hϕ=0, Eϕ=0, представляют интерес волны 
Е,Н типов, общее рассмотрение которых есть в [3,4]. Для 

примера на рис.1.15 указаны силовые линии простейшей Е-волны, вращающейся во-
круг оси z между двумя металлическими коаксиальными цилиндрами радиусов ρ=ρ1, 
ρ=ρ2. Для напряженностей имеем: 

 E E e E j Ej
ϕ

ϕ
ρρ ρ π ρ ρ ρ ρ= = − ×−

0 1 1 0 10 05/ sin[ ln( / )] , , /  

 × + = −−{sin[ ln( / )] cos[ ln( / )]} /π ρ ρ π π ρ ρ ωε ρϕ
ϕ1 1 0 22 e Hj . 

Указанные соотношения записаны по формулам (2.42) - (2.46) из [4] при n=1, 
ln(ρ2/ρ1)=1, ρ2=0,53λ0. 

 Бегущие вдоль координаты Н-волны образуют решение задачи о невидимом МД 
цилиндре (см. гл.2). 

 
 
1.4.3 Сфероточечная Т-волна наблюдается в МД с проницаемостями 
 
 α=a2/r2=a2/(x2+y2+z2).  (1.122)  
 
Сферические фронты переменного радиуса закреплены в одной точке x=y=z=0 и 

описываются фазовым множителем exp(−jk0a2z/r2). Линии энерговектора Пойнтинга яв-
ляются окружностями, которые начинаются в точке r=0 при z<0, а заканчиваются в той 
же точке, но при z>0. Может показаться, что такая структура линий потока энергии не-

 
Рис.1.15. Силовые линии  
плоскоосевой Е-волны 



реализуема на практике. Чтобы развеять это предположение, рассмотрим устройство 
фокусировки электромагнитной энергии путем «собирания» ее с поверхности в точку. 

 Пусть в коаксиальном кабеле бежит плоская волна с напряженностями 
 
 E Z H E a e jk z

ρ ϕ ρ= = − −
0 0

1 0 .  (1.123) 

 
Кабель заканчивается тороидальной (но без отверстия) металлической крышкой, а 

электрические силовые линии искривляются, как показано на ри.1.16,а. При z>0 распо-
ложен МД с проницаемостями по (1.122), причем, поверхности постоянства значений 
проницаемостей α=C есть концентрические сферы r=C (рис.1.16,б). Ввиду неоднород-
ности МД происходит искривление линий вектора Пойнтинга Π , как показано на 
рис.1.16,в. Напряженности волны в МД проще всего описать с помощью координат 

 
 ξ=ln(aρ/r2), ϕ=arctg(y/x), ζ=z/r2,  

а именно [4]: 

 E Z H E a e jk a
ξ ϕ

ζρ= = − −
0 0

1 0
2

.  (1.124) 

 
 

 
Рис.1.16. Сфероточечная Т-волна с линиями напряженности электрического поля (а), в МД со сферами 

постоянства проницаемостей (б) и линиями вектора Пойнтинга (в) 
 
Сопоставление (1.123), (1.124) показывает, что на границе z=0 между воздухом и 

МД происходит непрерывное «сшивание» касательных составляющих векторов полей 
при отсутствии нормальных составляющих. Поэтому рассмотренное устройство явля-
ется согласованным переходом для плоскопараллельной волны в сфероточечную волну. 
Энергия, пришедшая по коаксиальному кабелю, оказывается полностью переданной с 
помощью равнопроницаемого МД «точечному» потребителю, расположенному при r=0. 

 
1.4.4. Для описания сфероосевых волн удобно использовать тороидальные коорди-

наты класса СБIII: 

 ch r a a tg y x r a r a aξ ρ ϕ ζ ρ= + = = − + −( )/ , / ,cos ( )/ ( )2 2 2 2 2 2 2 2 22 4 .  (1.125) 

 
Координатные поверхности ξ=C, ϕ=C, ζ=C (рис.1.17,а) есть соответственно торои-

дальные поверхности, полуплоскости, и сферические вырезки - куполы, опирающиеся 



на окружность ρ=a, z=0. В частности, ζ=0 есть плоскость с круглым отверстием, а ζ=π - 
диск с радиусом а. Из-за наличия неоднородного МД с проницаемостями 

 

 α ρ= + −b r a a2 2 2 2 2 24/ ( )   (1.126) 

 
происходит закручивание энергии вокруг указанной окружности, т.е. линии потока 
энергии характеризуются ортом ζ0 , касательным к тороидам ξ=C и к полуплоскостям 

ϕ=C. Фазовым множителем для сфероосевых Т-волн является exp(−jk0ξb2/2a), где кон-
станта b2 соответствует формуле (1.126). 

 На рис.1.17,б в соответствии с (1.126) представлены овалы Кассини как линии пе-
ресечения с плоскостью чертежа поверхностей неизменного значения проницаемостей 
α=C. Указанные поверхности образованы вращением овалов Кассини вокруг оси z, т.е. 
являются сплюснутыми поверхностями вращения. Имеются четыре различных формы 
овалов Кассини, указанные на рис.1.17,б, что позволяет выбирать разграничительную 

поверхность α=1 в четырех видах: а) сплюснутой эллипсоидальной при b a> 2 , б) эл-

липсоидальной с углублением при a b a< < 2 , в) эллипсоидальной с максимальным 
углублением (точкой r=o) при b=a, г) тороподобной при b<a. Изоимпедансная среда 
внутри поверхности α=1 будет замедляющей, а снаружи - ускоряющей. 

 
Рис.1.17. Координатные поверхности тороидальной системы (а),  

поверхности постоянства проницаемостей (б) 
 
 Фазовые фронты волны испытывают превращение от плоскости с отверстием 

(ζ=0) в сферический купол ζ=C>0, уменьшающийся до размеров диска ζ=π, чтобы по-
том перейти в подвешенные чаши ζ=C>π. Наконец, при ζ=2π происходит начало ново-
го цикла, когда плоскость с отверстием является также фронтом ζ=0. Заметим, что фа-
зовые фронты ζ=C сфероосевых волн не ортогональны к поверхностям α=C.  

 Рассмотрим разворотное устройство с использованием сфероосевой волны. Пусть 
по коаксиальному кабелю с границами ρ=ρ1, ρ=ρ2 (рис.1.18,а) бежит волна с напряжен-
ностями (1.123). Необходимо развернуть поток энергии, направив его против оси z в 
другой коаксиальный кабель с границами ρ=ρ3, ρ=ρ4. Для этого в торцевой части ис-
пользуется МД с проницаемостями по (1.126), ограниченный тороидальной металличе-
ской крышкой, как показано на рис 1.18,а. В МД волна будет иметь [4] напряженности 

 



 E Z H E a e jk b a
ξ ϕ

ζρ= = − −
0 0

1 20
2 / ,  (1.127) 

 
поэтому согласно (1.123), (1.127) на границе z=0, ρ1<ρ<ρ2 и на границе z=0, ρ3<ρ<ρ4 
происходит согласованный переход энергии из воздуха в МД, а затем из МД в воздух. 
Важно, что использование тороидальной крышки обусловило связь между ρ1,ρ2 и меж-
ду ρ3,ρ4 по правилу инверсии [15]: 

 ρ3=a2/ρ2, ρ4=a2/ρ1. 
 
Поэтому второй коаксиальный кабель имеет то же волновое сопротивление, что и 

первый, ибо ρ4/ρ3=ρ2/ρ1. На рис.1.18,а штриховые линии есть перенесенные с рис.1.17,б 
отрезки овалов Кассини как линий постоянства проницаемостей α=C. Идею создания 
разворотного устройства можно повторить и получить сверхширокополосное переход-
ное устройство между двумя кабелями с равными волновыми сопротивлениями, но раз-
личными внешними диаметрами (риc.1.18,б).  

 
Рис.1.18. Устройства с использованием сфероосевой волны: а) разворотное, б) переходное 

 
1.4.5. С использованием бисферических координат 
 

 sh r a a tg y x ch r a r a aξ ρ ϕ ζ ρ= − = = + − +( ) / , / , ( ) / ( )2 2 2 2 2 2 2 2 22 4   (1.128) 

 
удобно исследовать T,Е или Н бисферические волны в МД с проницаемостями  
 

 α = + −b r a z a2 2 2 2 2 24/ ( ) .  (1.129)  

 
Сферическая волна, зародившись в точке z= −a, ρ=0, смещается от этой точки до 

симметричной точки z=a, ρ=0 (рис.1.19,а). Радиус сферического фронта при этом изме-
няется от нуля до ∞ (для плоскости z=0), а затем уменьшается до нуля. Например, про-
стейшая Т-волна имеет напряженности 

 



 E Z H E a e jk b a
ξ ϕ

ζρ= = − −
0 0

1 20
2 / ,  (1.130) 

 
где b2 - константа, входящая в (1.129). 

 Можно показать [4], что поверхности α=C образованы вращением овалов Кассини, 
изображенных на рис.1.17,б, относительно горизонтальной оси, которая после переме-
ны местами координат является осью z. Теперь поверхность α=1 может быть следую-

щих четырех видов: а) вытянутый эллипсоид при b a> 2 , б) вытянутый эллипсоид с 
«талией» при a b a< < 2 , в) две каплевидных поверхности с общей точкой r=0 при 
b=a, г) две раздельных каплевидных поверхности при b<a. Указанная разграничитель-
ная поверхность делит все пространство на замедляющую среду внутри и ускоряющую 
среду снаружи. Фазовые фронты бисферических волн (рис.1.19,а) не ортогональны к 
поверхностям α=C, указанным на рис.1.17,б. 

 На рис.1.19,б представлено фокусирующее устройство с использованием волны 
(1.130). А именно, пришедшая по коаксиальному кабелю снизу плоскопараллельная 
волна переходит без отражения в сферическую волну в МД. Расстояние а между плос-
костью стыковки волн z=0 и фокусом - точкой собирания энергии - отлично от нуля, 
что было характерно для устройства, представленного на рис.1.16. Штриховые линии 
на рис.1.19,б показывают вид поверхностей вращения, где наблюдается постоянство 
проницаемостей α=C. 

 
Рис.1.19. Фазовые фронты бисферической волны (а), и ее использование в фокусирующем устройстве (б) 

 
 
1.4.6. Рассмотренные плоские и сферические волны с непараллельными фронтами 

наблюдаются в неоднородных равнопроницаемых МД, имеющих одну из четырех ви-
дов неоднородностей (1.121), (1.122), (1.126), (1.129). Свойства этих волн аналогичны в 
расчетном смысле свойствам плоскопараллельных, сферопараллельных волн, сущест-
вующих в воздухе. 

 Все шесть классов Т-волн (Eζ=0, Hζ=0) имеют напряженности, рассчитываемые по 
формулам 

 ( ) ( ) ,( ) ( ) , , ,hE hE hE hE E Z H E Z Hη ξ ξ η ξ ξ η η ξ η η ξ′ = ′ ′ = − ′ = = −0 0  

где  h E iE W i e jk h C( ) ( )ξ η
ζξ η ζ− = + − 0 ,  (1.131) 

а W(ξ+iη) есть аналитическая функция комплексного переменного. Все шесть классов 
Е-волн имеют формулы для поперечных составляющих: 
 



 E Z H j U H j U E ZE
C
E E E E

C
E

ξ η ξ ξ η ηωε σ ωε σ/ , / ,= = − ′ = ′ = −0 0   (1.132) 

где  Z h h k h h U h EC
E

C C= = − = =β ωε σ β γζ ζ ζ ζ/ , / ( ) ,0 0
2 2 21 .  (1.133) 

а все шесть классов Н-волн: 
 E Z H j V E Z H j VH

C
H H H

C
H H

ξ η η η ξ ξβσ βσ/ , / ,= = − ′ − = = − ′   (1.134) 

где  Z V h HC
H = =ωµ β ζ ζ0 / , .   (1.135) 

Функции U,V, определяющие по (1.133), (1.135) продольные составляющие векторов 
поля, а также по (1.132), (1.134) поперечные составляющие, находятся по формулам: 
 

 U u e V v ej t h j t hC C= =− −( , ) , ( , ) ,( ) ( )ξ η ξ ηω βζ ω βζζ ζ   (1.136) 
 

где u или v является решением двумерного уравнения 
 

 ′′ + ′′ + =u u h uξ η α γ2 2 2 0 .  (1.137) 

 
1.4.7. Граничная поверхность, направляющая некоторую из указанных волн, при-

надлежит к одному из множеств поверхностей ξ(x,y,z)=C,η(x,y,z)=C. Наличие такого 
большого числа вариантов граничных поверхностей совсем не означает полный произ-
вол их геометрии. Пользоваться формулами (1.131) - (1.137) не придется, если выраже-
ния для напряженностей новых волн записывать по выражениям для плоскопараллель-
ных (ПП) волн на основе предлагаемой ниже расчетной аналогии. Основной при этом 
является процедура установления характера граничных поверхностей, направляющих 
одну из плоскоосевых, сфероточечных, сфероосевых, бисферических волн, по виду ли-
ний ξ0(x,y)=C, η0(x,y)=C, конкретизирующих форму цилиндрической границы для ПП 
волны. 

 Эти геометрические правила были най-
дены ранее [15,16], они позволяют указать 
вид трехмерных координатных поверхно-
стей ξ(x,y,z)=C, η(x,y,z)=C в классах ПБII, 
СБII - СБIV по виду сетки линий на единст-
венной плоскости. Для координат классов 
СБII, СБIV отправная плоскость ζ=z=0 
(рис.1.20,а,б) является вырождением сферы 
ζ=C при неограниченном увеличении ее ра-
диуса. Для координат классов ПБII, СБIII 
отправная плоскость (рис.1.20,в,г) состоит 
из двух полуплоскостей ζ=0 и ζ=π, входя-
щих в состав семейства ζ=C как полуплос-
костей для ПБII или полусфер для СБIII.  

С помощью рис.1.20 укажем правила 
геометрического формирования граничной 
поверхности. Выбираем в качестве направ-
ляющей желаемую криволинейную линию Г 
на отправной плоскости. Привычная цилин-
дрическая граничная поверхность формиру-

ется путем смещения вдоль направляющей прямолинейной образующей. Новые же гра-
ничные поверхности несколько усложнены за счет использования в качестве образую-

 
Рис.1.20. Геометрическое формирование гранич-
ных поверхностей для волн: а) сфероточечной,  

б) бисферической, в) плоскоосевой,  
г) сфероосевой 



щей не прямой L0, а окружности L: а) окружности, закрепленной в точке (СБII), б) от-
резка окружности, закрепленного в двух точках z=±a, ρ=0 (СБIV), в,г) окружности, 
смещающейся вдоль симметричных ветвей Г, Г* (ПБII, СБIII). 

 Формульная часть аналогии между ПП и новыми волнами также достаточно про-
ста. Рассмотрим ее только для Т-волн. Пусть известны составляющие напряженностей 
ПП волны: 

 E F z h E F z hξ ηξ η ω ξ η ω0
1 0 0 0

0
2 0 0 0= =( , , , ) / , ( , , , ) / ,   (1.138) 

 
где для цилиндрических координат, заданных равенством  
 

 ξ0+iη0=f(x+iy),  (1.139) 
 
учтены коэффициенты Ламе: hξ=hη=h0, hζ=hz=1. Составляющие напряженностей новой 
волны есть 

 Eξ=F1(ξ,η,ζ,ωhζC)/h, Eη=F2(ξ,η,ζ,ωhζC)/h,  (1.140)  
где hξ=hη=h, а константа hζC входит в характеристику неоднородного равнопроницаемо-
го МД 

 α=hζC/hζ(ξ,η,ζ),  (1.141)  
 
зависящую от коэффициента Ламе hζ продольной координаты. Поперечные координаты 
для (1.140) определяются формулами 

 ξ η ρ+ = +i f r x iy СБII[ ( ) / ]( )2 2 , 

 ξ η ρ ρ+ = − + − + +−i f r a r a a x iy СБIV[( ) ( ( ) )( )]( )2 42 1 2 2 2 2 2 2 2 , (1.142) 

 ξ η ρ ρ+ = + >i f z i ПБII[ ], ( ),0  

 ξ η ρ ρ+ = + + + + − <i f a x iy r a r a a a СБIII[ ( ) / ( ( ) )], ( )2 42 2 2 2 2 2 2 2 .  

Правило соответствия границ, поясненное с помощью рис.1.20, действует, если в 
(1.139), (1.142) используется одна и та же функция f комплексного переменного. 

 Укажем еще обобщение аналогии, когда в характеристику проницаемостей введе-
на по сравнению с (1.141) дополнительная зависимость от продольной координаты ζ: 

 
 α=α0(ζ)hζC/hζ(ξ,η,ζ).  (1.143) 
 
Вместо формул (1.140) теперь действуют равенства 
 

 E F d h h E F d h hC Cξ ζ η ζξ η α ζ ω ξ η α ζ ω= =∫ ∫1 0 2 0( , , , ) / , ( , , , ) / .  (1.144) 

  
Для иллюстрации простоты предложенной аналогии получим с ее помощью выра-

жения для напряженностей плоскоосевой Т-волны, вращающейся между двумя метал-
лическими цилиндрами (рис.1.21,а), когда в (1.143) функция проницаемостей МД α0 
имеет вид, изображенный на рис.1.21,б, т.е. при 

 
 α(ρ,ϕ)=α0(ϕ)a/ρ.  (1.145) 
 
Аналогом - ПП волной является простейшая волна между плоскостями (рис.1.21,в) 

с напряженностями 



 E E e Z Hy
jk z

x= = −−
0 0

0 ,  

отвечающими формулам (1.138). В соответствии с (1.142), (1.144) имеем для плоскоосе-
вой Т-волны по рис.1.21,а: 

 E Z H

E jk a
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Усложнение вида зависимости (1.145) по сравнению с выражением (1.121) не на-
рушает условий одинаковости импеданса волны при всех углах ϕ, т.е. Т-волна перехо-
дит через границы ϕ=ϕ1, ϕ=ϕ2 без отражения. 

 

 
 а б в 

Рис.1.21. Плоскоосевая волна между двумя цилиндрами (а) в МД с проницаемостями по (б) 
 и ее расчетный аналог (в) 

 
1.5. Квазисогласованные среды 
 
1.5.1. Дадим прежде всего необходимые определения. Предыдущие параграфы бы-

ли посвящены средам, которые в силу равенства 
 
 εr(x,y,z)=µr(x,y,z)=α(x,y,z)  (1.146) 

 
носили название равнопроницаемых МД, либо в соответствии с уравнением 
 

 Z Z= = =µ ε π/ 0 120   (1.147) 

 
назывались изоимпедансными. В данном параграфе излагаются принципы перенесения 
полученных результатов на среды, определяемые уравнениями 
 

 εr(x,y,z)=α(1−a), µr(x,y,z)=α(1+a)  (1.148) 
что дает для импеданса  
 

 Z Z a a= = + −µ ε/ ( ) / ( ).0 1 1   (1.149) 

  
Если для стоящего в (1.148), (1.149) параметра а допускать зависимость от коорди-

нат, то будет рассматриваться поле в произвольной изотропной среде, поскольку с по-



мощью (1.148) лишь производится переобозначение - замена функций εr,µr на две дру-
гие (α,a), связанные с ними равенствами 

 
 α=(εr+µr)/2, a=(µr−εr)/(µr+εr).  (1.150) 
 
Надо исключить из рассмотрения такой произвол, поэтому в дальнейшем под а бу-

дем понимать параметр, не зависящий от координат x, y, z. При этом формула (1.149) 
выражает, по-прежнему, условие независимости импеданса среды от координат. 

 Во многих случаях параметр а удобно полагать малой величиной: 
 
 |a|<<1,  (1.151) 
 

что, в частности, упрощает выражение (1.149): 
 Z≈Z0(1+a).  (1.152)  
 
Очевидно, что равенства (1.148), (1.149) переходят в (1.146), (1.147) при a→0. Итак, 

квазисогласованная среда определена с помощью соотношений (1.148), (1.151), (1.152) 
как среда, наиболее близкая по поведению в электромагнитном поле к равнопроницае-
мому (изоимпедансному) МД. Для теории это дает возможность учесть параметр мало-
сти а и перенести ранее полученные результаты на квазисогласованные среды. Для 
практики важно, что структуры новых электромагнитных полей недалеко «уходят» от 
полей в согласованных средах, когда обеспечивались многие полезные свойства: широ-
кополосность, минимум реактивной энергии, минимум требований к электрической 
прочности и т.п. 

 
1.5.2. Применительно к задачам о плоскослоистых средах укажем особенности уче-

та параметров малости an в формулах для коэффициентов отражения (1.1), (1.9), (1.18), 
коль скоро согласно (1.152) величина an входит в относительный импеданс слоя 

 
 zn=Zn/Z0=1+an.  (1.153)  
 
Величины zn фигурируют в формулах Френеля, если наблюдается нормальное па-

дение волны. При наклонном падении волны используются [8,9] импедансы при пер-
пендикулярной поляризации z zn n n⊥ = / cosθ  либо импедансы z zn n nΙΙ = cosθ при парал-
лельной поляризации. Для изоимпедансной стопы слоев все zn=1 и в формулах (1.1), 
(1.9), (1.18) для коэффициентов отражения R участвовали только Cn=cosθn. Если теперь 
рассматривать случай квазисогласованной среды, когда в (1.153) an≠0, то два коэффи-
циента отражения R R⊥ . ΙΙ  находятся по R с помощью простой подстановки. А именно, 
при перпендикулярной поляризации имеем R⊥  по R, если вместо Cn использовать 
Cn/(1+an). Коэффициент отражения R ΙΙ  находится по R, если вместо Cn подставить 
Cn(1+an). Например, при падении волны из воздуха на границу квазисогласованного по-
лупространства имеем по (1.1): 

 R
C a C

C a C
R

C a C

C a C⊥ =
+ −
+ +

=
− + +

+ +
1 2 2

1 2 2

2 2 1

2 2 1
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1
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1
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( )
,

( )

( )ΙΙ .  (1.154) 

Параметр малости а на фазовую скорость плоской волны почти не влия-

ет: v c a c= − ≈0
2

01/ / ,α α  что позволяет использовать для волн те же фазовые множи-



тели, что и ранее. Поэтому формулы Снеллиуса типа (1.2), (1.10) остаются применимы-
ми и к многослойной среде, когда материал n -го слоя является квазисогласованным. 
Иными словами, пренебрегаем влиянием an на выражения Cn относительно угла паде-
ния. 

 Концепцию слабого рассогласовании за счет an≠0 полезно использовать в несколь-
ких ситуациях. Во-первых, таким путем можно учитывать влияние технологических 
неточностей по выполнению равенства между εr и µr при изготовлении равнопроницае-
мых МД. Относительное различие между εr и µr согласно (1.150) определяет величину а. 
Во- вторых, слабое рассогласование будет полезным эффектом при создании плавных 
согласующих переходов, устройств угловой селекции приходящих волн. Наконец, с 
помощью параметра малости а можно привносить в ранее полученные результаты учет 
малых потерь энергии. Так, если комплексные проницаемости представить в виде 
ε ε ε ε µ µ µ µc r r c r rj j= ′ − ′′ = ′ − ′′( ) , ( )0 0 , то при выполнении условий малости потерь 

 ′′ << ′ ′′ << ′ε ε µ µr r r r,   (1.155) 
имеем по (1.150): 

 α ε µ ε µ α= ′ = ′ = ′′− ′′r r r ra j, ( ) / 2 .  (1.156) 
 
Согласно (1.156) параметр α остается действительным числом, но малый параметр 

а, являясь мнимым числом, обуславливает по формулам (1.154) комплексный характер 
коэффициентов отражения. 

 Заметим, что для создания поглощающих покрытий находят применение «черные» 
среды (см. гл. 2) с противоположными по отношению к (1.155) неравенствами, когда 
α ε µ= ′′ = ′′ =j j ar r , 0 . К указанному сильно поглощающему «черному» материалу непри-
менимы результаты, полученные для непоглощающего МД. Это обусловлено противо-
положным назначением таких сред: «черный» материал должен прекратить перенос 
энергии волной, а равнoпроницаемый МД обеспечивает режим полного пропускания 
энергии. 

 
1.6. О реализации изоимпедансных сред 
 
1.6.1. Диэлектрическую и магнитную проницаемости среды можно определить 

двумя способами: а) по поведению среды в квазистатическом электрическом или маг-
нитном поле, б) с предварительным нахождением параметров волнового процесса - 
волнового числа и импеданса. По первому из них измеряется поляризованность веще-
ства в электрическом поле, а намагниченность в магнитном поле, после чего имеем: 

 
 ε ε µ µr rP E M H= + = +1 10 0/ , / .  (1.157) 
 
По второму способу предполагается, что в среде вдоль координаты S распростра-

няется волна, имеющая для поперечных составляющих напряженностей представление 
 E E e Z H E em

j t h
C m

j t hC C

⊥
−

⊥
−= =( , ) , ( , ) ,( ) ( )ξ η ξ ηω βζ ω βζζ ζ   (1.158) 

 
где β - продольное волновое число, ZC - волновое сопротивление среды для этой волны. 
В частности, в однородной среде волна бежит вдоль прямой z. По аналогии с формулами 
 

 ZC = =µ ε β ω µ ε0 0 0 0/ , / ,   (1.159) 

 



действующими для поля в вакууме, можно записать и для поля в среде соответствую-
щие связи между проницаемостями: 

 ZC = =µ ε β ω µε/ , / .  (1.160) 

Из (1.158) - (1.160) получаем расчетные формулы εr=n/zC, µr=nzC, где коэффициент 
преломления n и относительный импеданс известны, если найдены напряженности по-
ля (1.158): n c z E H ZC= = ⊥ ⊥0 0β ω/ , / . 

 Природой не создана среда - равнопроницаемый МД с α>1, поэтому нужно разви-
вать принципы композиционного построения таких волновых материалов. 

 Первый путь состоит в комбинировании двух сортов частиц - диэлектрика и фер-
ромагнетика. Многочисленные технологические приемы материаловедов тут могут 
дать интересные технические решения проблемы создания равнопроницаемых МД. 

 Второй путь развивает [4] известные идеи [17] о искусственном воспроизведении 
диэлектрика с помощью множества металлических шариков (электрических диполей) 
путем дополнительной реализации магнитных диполей в виде рамок с током, нагру-
женных на емкости.  

 Третий путь, представленный ниже в данном параграфе, состоит в использовании 
композиционных материалов из фабрично изготавливаемых диэлектрических и маг-
нитных пластин (стержней). Здесь идеология волнового представления электромагнит-
ного воздействия, в отличие от первых двух путей, является основной. 

 Отдельно, в третьей главе, рассмотрен четвертый путь - реализация эквивалентной 
цепной структуры, воспроизводящей волновой процесс, который имел бы место в рав-
нопроницаемом МД. 

 
1.6.2. Рассмотрим возможности создания пластинчатого композиционного мате-

риала, который по своим свойствам был бы близок к изоимпедансному МД. На 
рис.1.22,а представлена многослойная конструкция из чередующихся магнитных и ди-
электрических пластин толщиной h (областей Dµ,Dε). Существенно, что диэлектриче-
ские пластины имеют εr=α, µr=1, а магнитные пластины характеризуются проницаемо-
стями εr=1, µr=α. Перпендикулярно к плоскости рисунка, в направлении оси z, может 
распространяться плоская волна с напряженностями 
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Рис.1.22. Композиция диэлектрических и магнитных пластин (а),  
характеристики волны как функции поперечной координаты (б) 



 
За счет кусочно-постоянного вида функций (1.162) обеспечивается выполнение 

уравнений Максвелла в областях Dµ,Dε. На границах x=±h/2 соблюдается непрерыв-
ность касательного вектора магнитной напряженности и должный разрыв нормального 
вектора электрической напряженности. Традиционное определение волнового сопро-
тивления дает кусочно-постоянную функцию 
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Кроме напряженностей (1.161), описывающих волну с горизонтальной поляризаци-
ей, укажем выражения для напряженностей вертикально поляризованной волны: 

 

 E y A F e Z H x A ejk z jk z
2 0 2 2 0 2 0 2 2

0 0= − =− −α α, Φ ,  (1.164)  

где  F x
D

D2 2

1 1

1
= =



α α
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, ;

/ , .
Φ   (1.165) 

При этом для относительного импеданса остается в силе прежняя зависимость 
(1.163). Функции (1.162), (1.163), (1.165) графически представлены на рис.1.22,б. 

 Возможен и волновой процесс в виде суммы волн с напряженностями (1.161), 
(1.164): 

 E E E E em
jk z= + = −

1 2
0 α .   (1.166) 

Поляризация волны (1.166) будет различна в областях Dµ,Dε. Если в Dε вектор E  по 
отношению к оси y наклонен под углом 

 ϕ αε = arctg A A( / )1 2 , 

 
то в области Dµ имеем угол наклона 

 ϕ αµ = arctg A A( / )1 2 . 

 
В разных областях различна и амплитуда вектора (1.166)  
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  (1.167)  

По сравнению с амплитудой напряженности плоской волны в вакууме 
E A Am = +1

2
2
2  наблюдается уменьшение амплитуды (1.167) в Dµ и сильное уменьше-

ние в Dε. 
 Теперь можно усложнить задачу и ввести дополнительную границу z=0 между 

воздухом (z<0) и представленной на рис.1.22,а структурой, которая занимает полупро-
странство z>0. В воздухе кроме первичной волны  

 
 E x e Z H y ejk z jk z0

0 0
0

0
0 0= =− −,   (1.168) 

 
будет наблюдаться вторичное поле 

 E R e R e m x hR jk z
m

z

m

m= + ++
=

∞
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0 2 1 2 1β πcos[( ) / ],   (1.169) 
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+∑( / ) cos[( ) / ],β πβ   (1.170) 



состоящее из одной отраженной волны с амплитудой R0 и затухающих волн, для кото-
рых 

 β π π2 1
2 2 2

0
22 1 2 1m m h k m h+

−= + − ≈ +( ) ( ) / .   (1.171) 

В слоистом полупространстве при z>0 имеем 

 E T Fe F T e m x hT jk z
m

z

m

m= + +−
+

−

=

∞
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0

0 2 1 2 1α γ πcos[( ) / ],   (1.172) 
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где  γ π α π2 1
2 2 2

0
22 1 2 1m m h k m h+

−= + − ≈ +( ) ( ) / .   (1.174) 

 
Действительный характер чисел (1.171), (1.174) будет при 
 

 h < >λ α λ0 02 2/ / .  (1.175) 
 
Постановка задачи подразумевает минимальную роль высших типов волн в (1.169), 

(1.179), (1.172), (1.173). чтобы действие пластинчатой среды при отходе от границы z=0 
можно было выразить с помощью R0,T0. Поэтому при z=0 подстановка (1.168) - (1.170), 
(1.172), (1.173) в граничные условия производится с участием лишь R0,T0,R1,T1,. Имеем 
два уравнения  

 1 0 0 1 1 1 1+ − = −R T F F T R x h( ) cos( / )π ,  (1.176) 

 jk R T R T x h0 0 0 1 1 1 11( / ) ( / ) cos( / )− − = +α β γ α π .  (1.177) 
Равенство (1.176) можно приближенно удовлетворить, поскольку по (1.162) функ-

ция F1 зависит от x. Но уравнение (1.177) может быть выполнено, если  

 R T h h1 1
1 2

0
2 2

0
21 4 1 4= − = − −−σ σ α α λ λ, ( / ) / ( / ) .  (1.178)  

Рассматривая (1.176) при x=0 и x=h, а также подставляя (1.178) в (1.177), имеем 
систему уравнений 
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Решение системы (1.179) дает 
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Для тонких пластин, когда неравенства (1.175) усиливаются до вида 
 

 h << λ α0 2/ ,  (1.181) 

имеем по (1.178) σ=1/α и из (1.180): 
 

 f = + + + +[ / / ( / )] / [ / / ( / )]α α α α α2 1 1 2 1 1 1 .  (1.182) 
 



Заметим, что с ростом α соглас-
но (1.181) должна уменьшаться тол-
щина пластин. Функция (1.182) мед-
ленно спадает от единицы до нуля 
(рис.1.23). По допустимому значе-
нию коэффициента отражения нахо-
дится предельный параметр α. Ясно, 
что слоистая композиционная струк-
тура отражает меньше, чем одно-
родный диэлектрик с εr=α. Напри-
мер, если диэлектрик с εr=9 согласно 
рис.1.5,а дает R0≈−0,5, то слоистый 
МД с α=9 создаст по (1.180) отра-

женную волну с относительной амплитудой R0≈−0,12, ибо по (1.182) имеем f=0,78. 
Штриховой линией на рис.1.23 указана характеристика отражения от диэлектрика |RD|, 
построенная по (1.7) при θ1=0. Выигрыш от использования слоистого МД вместо ди-
электрика особенно заметен при α≤100. 

 
1.6.3. Воспользуемся известной аналогией [9] между задачами акустики и электро-

динамики и затронем проблему создания изоимпедансных акустических материалов. 
Магнитной проницаемости соответствует плотность вещества m, а диэлектрической 
проницаемости - удельная сжимаемость χ (1/χ=σ - удельная упругость). Поэтому импе-
данс плоской акустической волны определяется по формуле Z m m= =/ χ σ . Требо-

вание совпадения импедансов двух сред приводит к равенству 
 
 m(x,y,z)/m0=σ0/σ(x,y,z).  (1.183) 
  
Так, если в электродинамической задаче проницаемости цилиндрического МД со-

ответствовали (1.121), то в акустическом варианте необходимо иметь выполнение ра-
венств 

 m/m0=σ0/σ=a/ρ.  (1.184) 
 
Согласно (1.184) увеличение плотности с приближением к оси ρ=0 должно сопро-

вождаться уменьшением упругости. В природе трудно найти среду с таким сочетанием 
свойств: чем тяжелее среда, тем она больше сжимается. Весьма далеки друг от друга 
акустические импедансы различных материалов. Так, импедансы твердых тел на поря-
док больше, чем у жидкостей. Последние же имеют импеданс на три порядка выше, чем 
у газов.  

 Если, например, у железа и воздуха отношение плотностей есть m/m0≈7⋅103, то уп-
ругость воздуха по отношению к упругости железа очень мала: σ0/σ≈7⋅10−7. На границе 
железо-воздух вместо совпадения по (1.183) этих относительных параметров наблюда-
ется отличие на десять порядков, т.е. импедансы этих сред отличаются на пять поряд-
ков. Из изложенного ясно, что для изготовления изоимпедансных акустических сред 
необходимо разработать специальные методы композиции. 

 Обратимся к механической модели элементарного объема среды. Обычно в теории 
колебаний и волн такой моделью является осциллятор, состоящий из шарика с прикре-
пленной к нему пружиной. Масса шарика воспроизводит плотность среды, а упругость 

 
Рис.1.23. Коэффициенты отражения от пластинчатого МД 

и немагнитного диэлектрика 



пружины - упругость среды. Размещение группы шариков на горизонтальном стержне с 
пружинками между ними позволяет моделировать процесс возбуждения среды в виде 
упругой бегущей волны. Модель изоимпедансной среды выполняется с учетом (1.183). 
Если шарики имеют массы по возрастающей (m1<m2<m3...), то пружины должны иметь 
упругости с противоположным поведением (σ1>σ2>σ3...). Иными словами, самые легкие 
шарики связаны между собой наиболее жестко, а самые тяжелые - с помощью наиболее 
слабой пружины. На основе указанной модели в виде цепочки осцилляторов и можно 
создавать изоимпедансные акустические среды. 

 
1.6.4. Методы реализации сред, воспроизводящих распространение волны в изоим-

педансном МД, условно разбиваются на четыре группы. 
1. Первая группа включает в себя использование технологических приемов мате-

риаловедения для поточечного выполнения равенства εr=µr путем композиции диэлек-
трических и ферромагнитных частиц. 

2. Ко второй группе можно отнести предложения [4] по комбинации малых метал-
лических шариков и рамок (с емкостями) для искусственной реализации изоимпеданс-
ного МД. 

3. Третья группа содержит методы построения многослойных МД из готовых изде-
лий - диэлектрических и ферромагнитных пластин. 

4. В четвертую группу входят методы цепной реализации металловоздушной изо-
импедансной структуры, раскрытые ниже в гл.3. Эти методы являются многообещаю-
щими, ибо в отличие от предыдущих, их можно использовать на всех радиотехниче-
ских частотах, вплоть до 1015Гц. Кроме того, имеется возможность воспроизводить не 
только замедление Т-волн, когда α>1, но и ускорение (замедление) Е, Н-волн, когда 
α<1 (α>1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ГЛАВА 2. ПРИНЦИПЫ ИСПОЛЬЗОВАНИЯ ПОЛНОПРОЗРАЧНЫХ СРЕД 
 

2.1. Погружение устройств в равнопроницаемый однородный  
магнитодиэлектрик 
 
2.1.1. Равнопроницаемый однородный МД с α=αC=const для плоской волны являет-

ся средой, изменяющей, по сравнению с воздухом, волновое число, длину волны и фа-
зовую скорость: k=k0αC, λ=λ0/αC, v=c0/αC. Однако при этом структура волны остается 
прежней. Для практики важно знать, что происходит со сложным электромагнитным 
полем некоторого устройства, если его погрузить не в воздух, а в равнопроницаемый 
МД с αC>1. Данный параграф дает ответы на соответствующие вопросы: 1) как изме-
нить геометрию граничных поверхностей, чтобы сохранить неизменной структуру поля 
и, как следствие, электрические характеристики устройства? 2) как изменится структу-
ра поля, если при погружении сохраняется неизменной геометрия границ? 

 Поскольку первый вопрос возникает при миниатюризации устройств, то соответ-
ствующая теорема названа теоремой миниатюризации (п.2.1.2.). Вторая теорема явля-
ется теоремой подобия (п.2.1.3.), ибо она определяет условия записи выражений для 
напряженностей полей по формулам подобия функций. 

 Предварительно рассмотрим особенности математических моделей двух сравни-
ваемых граничных задач - для воздуха и для МД. Исходная задача для устройства в 
воздухе состоит из уравнений Максвелла 

 
 rot jk E rotE jkΜ Μ0

0
0 0

0
0= = −, ,   (2.1) 

где  Μ 0
0

0
0 0 0 02= = =Z H k, /ω ε µ π λ ,  

а также граничного условия 
 E gradf0

0 0× =   (2.2) 
 

на поверхности идеального проводника с уравнением 
 

 f x y z an0
0 0( , , , ) = .  (2.3) 

 
В формуле (2.3) параметры an

0  обобщенно отражают участие в уравнении поверх-
ности таких ее размеров как ширина, высота, радиус и т.п. Сложную геометрию эле-
ментов реального устройства обычно удается описать только с помощью кусочно-
аналитического задания функции в (2.3). Так, для плоского, цилиндрического или сфе-
рического участков можно использовать соответственно представления: 

 
 f C x C y C z a f x x y y a0 1 2 3 1

0
0 0

2
0

2
2
0 2= + + + = − + − −, ( ) ( ) ( ) ,

 f x x y y z z a0 0
2

0
2

0
2

3
0 2= − + − + − −( ) ( ) ( ) ( ) .   (2.4) 

 
 При погружении устройства в равнопроницаемый МД действуют уравнения Мак-

свелла 
 α αC Crot jk E rotE jk− −= = −1

0
1

0Μ Μ, ,   (2.5) 
а граничное условие 

 E gradf× = 0   (2.6) 
 



имеет место на поверхности проводника с уравнением 
 

 f(x,y,z,an)=0.  (2.7) 
 
Предстоит установить соответствие между решением первой граничной задачи 

(2.1) - (2.3) вида 
 E F x y z a H Z x y z an n

0 0 0 0 0
0

0 0= = =( , , , ), / ( , , , )Μ Φ   (2.8) 
 

и решением второй граничной задачи (2.5) - (2.7) 
 E F x y z a H Z x y z an n= = =( , , , ), / ( , , , )Μ Φ0 .  (2.9) 
 
2.1.2.Теорема миниатюризации имеет формулировку: применение вместо воздуха 

равнопроницаемого МД с αC>1 и уменьшение геометрических размеров устройства в αC 
раз ( a an n C= 0 /α ) сопровождается сохранением для напряженностей полей прежних 
функциональных зависимостей, но относительно новых координат: 

 
 E F X Y Z,a H X Y Z,an n= =0 0 0 0( , , ), ( , , )Φ ,  (2.10)  
 

где  X=αCx, Y=αCy, Z=αCz. 
Следствие: При увеличении проницаемостей среды в αC раз с одновременным 

уменьшением в αC раз размеров элементов проводящих границ остаются неизменными 
те электрические характеристики устройства, которые являются функциями частоты и 
относительных параметров a an

0
1
0/ . 

 При доказательстве теоремы прежде всего заметим, что уменьшение размеров в αC 
раз есть деформация граничной поверхности с уравнением (2.3) в граничную поверх-
ность (2.7) с уравнением 

 f x y z a f x y z an C C C C n( , , , / ) ( , , , )0
0

0 0α α α α= = .  (2.11)  
 
Очевидно, что в уравнениях Максвелла (2.5) и в уравнениях (2.6), (2.11) можно 

внести константу αC в переменные X=αCx, Y=αCy, Z=αCz, ввиду чего граничная задача 
(2.5) - (2.7) по переменным X,Y,Z имеет тот же вид, что и задача (2.1) -(2.3) по пере-
менным x,y,z. 

 Миниатюризация устройства в соответствии с (2.11) наглядно демонстрируется 
смещением плоского участка границы, уменьшением радиуса цилиндра или сферы, ес-
ли подставить (2.4) в (2.11) и иметь для участков новой границы: 
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0 2= + + + = − + − −Cx C y C z a x x y y aC C C C/ , ( / ) ( / ) ( / ) ,α α α α  
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0
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3
0 2= − + − + − −( / ) ( / ) ( / ) ( / ) .x x y y z z aC C C Cα α α α   (2.12) 

 
Переход от (2.8) к (2.10) не изменяет такие электрические характеристики устрой-

ства как входное сопротивление, характеристика направленности излучения и т.п., за-
висящие обычно от отношений геометрических параметров a an

0
1
0/ , входящих в (2.4), а 

не от их абсолютных величин. Например, волновое сопротивление кабеля при воздуш-
ном заполнении определяется отношением радиусов, а после заполнения кабеля МД с 
αC>1 имеем согласно (2.12) прежнее отношение, хотя радиусы уменьшились в αC раз. 



 В соответствии с теоремой миниатюризации можно существенно уменьшать раз-
меры при сохранении частотных характеристик таких устройств на отрезках длинных 
линий как фильтры, устройства сложения мощностей, мостовые устройства и т.п. Спе-
циально отметим особенности использования этой теоремы для антенн, которые сохра-
няют после погружения и укорочения прежнюю электрическую длину, ибо 
( / ) / ( / ) /l lc C0 0 0 0α λ α λ= . В зависимости от величины l0 0/ λ  антенны можно разбить 
на четыре класса: 1) сверхбольшие, когда l0 0 2 5/ ,λ > ; 2) большие, когда 
2 5 0 250 0, / ,> >l λ ; 3) малые, когда 0 25 0 0250 0, / ,> >l λ ; 4) сверхмалые, если 
0 025 0 0, /> l λ . Нерационально заниматься миниатюризацией сверхмалых антенн, кото-
рые могут излучать лишь за счет осциллирующих по длине вибратора токов и сильно 
реактивных плотностей энергии. Поэтому в дальнейшем не будем рассматривать по-
гружение в МД высокодобротных антенн, обладающих эффектом «сверхнаправленности». 

 
2.1.3. Для формулировки теоремы подобия полагаем, что до погружения устройст-

во имело геометрические параметры an
0 , а при погружении в МД с αC>1 также можно 

изменить в m раз величины этих параметров: a a mn n= 0 / . Тогда теорема подобия дает: 
после погружения устройства в равнопроницаемый МД с одновременным уменьшением 
в m раз размеров устройства напряженности поля определяются по формулам подобия 

 
 E F X Y Z,a m H X Y Z,a mn C n C= =0 0 0 0( , , / ), ( , , / )α αΦ . 
 
Следствие: В условиях действия теоремы электрические характеристики устройст-

ва, которые являются функциями частоты и относительных параметров a an
0

1
0/ , остают-

ся неизменными. Претерпевают изменения по закону подобия те характеристики, для 
которых важна величина нормирующего параметра a1

0 . 
 Доказательство этой теоремы заключается в сопоставлении задачи (2.1) - (2.3) и 

решения (2.8) с новой задачей (2.5) - (2.7), где используются переменные X,Y,Z, так что 
уравнение границы (2.7) есть: f x y z a m f X Y Z, a mn C n( , , , / ) ( , , / )0 0 0= =α . Очевидно, что 
новая граничная задача формулируется в переменных X,Y,Z, поэтому ее решение полу-
чается по решению (2.8) задачи для поля в воздухе путем замен: 
x X y Y z Z,a a mn C n→ → → →, , /0 0α . 

 Например, если длина короткой штыревой антенны была 10 и напряженность элек-
трического поля в воздухе есть 

 
 E Ck l r e jk r0

0 0
1 0= − −sinθ , 

 
то взяв антенну длиной 1=10/m и погрузив ее в МД, имеем  
 

 E Ck l m r eC C
jk rC= − −

0 0
1 0( / )( ) sinα α θ α , 

 
т.е. получаем поле излучения от штыревой антенны длиной 1=10/m в среде с волновым 
числом k=k0αC. 

 
2.1.4. Нереальность погружения в неограниченный МД заставляет исследовать 

проблему выбора для МД границ входа и выхода, где происходит согласованный пере-
ход волны из воздуха в МД и снова в воздух. Общие принципы выбора клеммных гра-



ней в так называемой волновой области подробно описана в [3], которые теперь нужно 
дополнить особенностями учета «стыка» МД-воздух. 

 Очевидно, что плоская волна в фидере проходит плоскую границу воздух -МД без 
отражения. Несколько сложнее ситуация с выходом волны от антенны, погруженной в 
МД конечных размеров. В соответствии с данными параграфа 1.3 границу между МД и 
воздухом нужно делать сферической, выбирая r0 на основе приведенных там рекомен-
даций. Наиболее перспективным для практики будет выбор r0 достаточно малым, но 
при погружении слабонаправленных антенн, близких по свойствам к квазиизотропному 
излучателю. По этой причине, вероятно, следует отказаться от погружения в шаровой 
МД названных в п.2.1.2. сверхбольших антенн с остронаправленными характеристика-
ми излучения. 

 Заметим, что давно известная идея погружения антенны в диэлектрик или даже 
магнитодиэлектрик [18] получает здесь принципиальной важности дополнения: а) сре-
да должна быть равнопроницаемым МД, б) граница, через которую сферическая волна 
выходит из МД в воздух, должна быть сферической. 

 В качестве ориентира можно указать, что создание равнопроницаемого МД с 
α=105 позволит использовать четвертьволновый штырь размером 7,5 см для излучения 
электромагнитной энергии на частоте 10 кГц. Этот же материал обеспечивает эффек-
тивное излучение с частотой 50 Гц, если штырь будет длиной 15 м.  

 С учетом указанных рекомендаций по выбору фидерной и антенной энергограней, 
на рис.2.1,а представлено антенно-фидерное устройство, погруженное в МД. Для при-
мера на рис.2.1,б изображен фильтр ОВЧ, погруженный в МД. 

 
Рис.2.1. Погружение в равнопроницаемый МД антенно-фидерного устройства (а) и фильтра ОВЧ (б) 

 
2.2. Составные полнопрозрачные среды 
 
2.2.1. Плоскость как сфера бесконечно большого радиуса присутствует во всех че-

тырех классах непараллельных фазовых фронтов новых волн (рис.1.20). Если совмес-
тить такой плоский фронт с фронтом обычной плоскопараллельной волны, то можно 
осуществить согласованную передачу энергии от одной волны к другой. Так формиру-
ется полнопрозрачная среда, направляющая волну по составной траектории, состоящей 
из отрезков прямых и окружностей. Прямые наблюдаются в однородных МД с 
α=αC=const, а окружности - в неоднородном МД с проницаемостями по (1.141) или 
(1.143) с конкретизацией по (1.121), (1.122), (1.126), (1.129). 



 Практическая полезность составных плоско - сферических волн уже показана с 
помощью рис.1.16, 1.18, 1.19,б. Число же вариантов таких составных волн весьма вели-
ко. Если даже исключить из рассмотрения сферопараллельные волны, то для взаимных 
преобразований плоскопараллельных, плоскоосевых, сфероточечных, сфероосевых, би-
сферических волн только одних сочетаний имеем: C C C C5

2
5
3

5
4

5
5 26+ + + = . Могут пред-

ставить интерес и варианты с перестановкой этих волн в цепочке преобразований. 
 Кроме совмещения плоских фронтов двух волн надо позаботиться об одинаковом 

распределении амплитуд на фронтах. Соответствие геометрии границ направляющих 
проводников обеспечивается при использовании рис.1.20 и формул (1.142). В дополне-
ние к вариантам по рис.1.16, 1.18, 1.19,б рассмотрим еще примеры составных волн. 

 
2.2.2. На рис.2.2,а изображены линии вектора Пойнтинга для составной волны, со-

стоящей из сфероточечной и плоскоосевой волн, существующих соответственно в об-
ластях А,В с проницаемостями по (1.122), (1.121).  

 
Рис.2.2. Составные волны: а) сфероточечная - плоскоосевая, б) бисферическая - плоскоосевая, 

в) сфероточечная - сфероосевая 
 

Заштрихованная граница есть поверхность клина с двумя гранями: грань ϕ=0 является 
идеально проводящей, а грань ϕ=ϕ1 покрыта слоем погло-
щающего материала. Указанная составная сферо - плоская 
волна может забирать энергию от точечного источника с 
тем, чтобы равномерно распределить ее по поглощающей 
полуплоскости. Заметим, что при ϕ1=π/2 область В для 
плоскоосевой волны исчезает.  

Если точечный источник энергии не должен находиться 
на ребре клина, то можно организовать составную волну по 
рис.2.2,б, когда в области А используется МД с проницае-
мостями по (1.129), а в области В - МД с проницаемостями 
по (1.121). 

 Передача энергии от точечного источника к двухсто-
ронней поглощающей полуплоскости представлена на 
рис.2.2,в. Область А заполнена МД с проницаемостями 
(1.122), а в области В имеем для МД параметр (1.126). 

 На рис.2.3,а показана передача энергии от точки 1 к 
точке 2 бисферической волной в неограниченном МД с 
проницаемостями по (1.129). Составная сфероточечная - би-
сферическая волна переносит энергию по линиям вектора 

 

 
Рис.2.3. Бисферическая волна 
(а) и составная сфероточечная 

- бисферическая волна (б) 



Пойнтинга, представленными на рис.2.3,б. Для этого область А заполняется МД с про-
ницаемостями (1.122), а область В - МД с проницаемостями (1.129). 

 
 
 
2.2.3. Рассмотрим теперь более сложные составные волны, когда участвуют более 

двух волн. На рис.2.4 представлено устройство поворота плоскопараллельной Т-волны 
на произвольный угол. Переход из воздуха (области А) в МД с проницаемостями по 
(1.121) (область В), а затем опять в воздух (область С) везде является согласованным. 
Поэтому такой изгиб не создает излучения, что обычно имеет место, например, вблизи 
изгибов полосковых линий СВЧ. Области А,В,С,D определены как области изменения 
углов: 

 
( ) / , ( ) / / ,

( ) / , ( ) .

A B

C D

0 2 2 2

2 2
0

0 0 0

< < < < −
− < < < <

ϕ π π ϕ ϕ π
ϕ π ϕ ϕ ϕ ϕ π  

 

 
Рис.2.4. Сложные составные волны: а) плоскопараллельная - плоскоосевая - плоскопараллельная,  

б) плоскопараллельная - плоскоосевая - бисферическая,  
в) плоскопараллельная - плоскоосевая - бисферическая - сферопараллельная 

 
В области D, занятой идеальным проводником, поле отсутствует. В области А имеем 
 
 E y E e H z E Z ejk x jk x= = − −

0 0 0 0 0
10 0, .  (2.13) 

 
В МД (область В), где поток энергии поворачивается, структура поля описывается 

формулами 
 E E x y e jk a= + − −

0 0 0
20( cos sin ) ,( / )ϕ ϕ ϕ π  

 H E Z z e jk a= − − − −
0 0

1
0

20 ( / ) .ϕ π   (2.14) 
 

Наконец, в области С, занятой воздухом, имеем 
 

 E E x y e jk x y= − − +
0 0 0 0 0

0 0 0( sin cos ) ,( cos sin )ϕ ϕ ϕ ϕ  

 H E Z z e jk x y= − − − +
0 0

1
0

0 0 0( cos sin ) .ϕ ϕ   (2.15)  
 
Итак, составная плоско - плоско - плоская волна описывается выражениями (2.13) - 

(2.15) для напряженностей электрического и магнитного полей. 
 Другой пример составной волны из плоскопараллельной, плоскоосевой и бисфе-

рической волн, представлен на рис.2.4,б. 



 Многократное преобразование волн иллюстрирует рис.2.4,в. Вначале плоскопа-
раллельная волна в области А (воздух) скользит вдоль идеального проводника, повора-
чиваясь затем в области В, занятой МД с проницаемостями по (1.121). В области С, за-
нятой МД с проницаемостями по (1.129), происходит фокусировка энергии в точку. Из 
этой точки, уже в области D, происходит излучение сферопараллельной волны в воздух. 

 
2.2.4. Идеология составных фронтов может использоваться для анализа поворотно-

го устройства в виде полуцилиндра из МД (рис.2.5,а). Плоская стенка полуцилиндра, на 
которую падает плоская волна с напряженностями 

 
 E z E e H x Z E ejk y jk y0

0 0
0

0 0
1

0
0 0= =− − −, ,  (2.16)  

 
имеет функцию проницаемости (1.121), представленную на рис.2.5,б. В МД полуци-
линдре наблюдаются две плоскоосевых встречно бегущих волны: 
 

 E z E e ejk a jk a= +− −
0 0

0 0( )( )ϕ ϕ π ,  (2.17)  
 

отмеченные на рис.2.5,а цифрами 1 и 2. Поверхность полуцилиндра состоит из осве-
щенной плоской части Г0 (y=0) и теневой цилиндрической части Г1. На Г0 амплитуда 
падающей волны есть Е0, а амплитуда развернутой волны согласно (2.17) равна 
E e jk a

0
0− π . Поэтому, с определенной степенью идеализации, можно утверждать, что по-

луцилиндр отбрасывает упавшую на его плоскую стенку энергию, в основном, назад в 
виде плоского волнового пучка: 
 

 E Z H E e e xR jk a jk y= − = −
0 0

0 0π Π( ),   (2.18) 

где  Π( )
, ,

, .
x

x a

x a
=

<
>





1

0

2 2

2 2   (2.19) 

 
Рис.2.5. Устройство поворота волны (а) в полуцилиндре - МД с проницаемостями по б) 

 
Конечно, такое описание поля, не противоречащее энергетике процесса, является 

приближенным, так как оно вводит представление об отраженном пучке с резкими гра-
ницами по (2.19), а также и допущение о нулевом поле в области тени. 



 Полуцилиндр будет выступать в роли предельной магнитной стенки, если a=mλ0/π, 
где m=1,2,..., когда при y=0 имеем из (2.16), (2.18) E0+ER=2, H0+HR=0. Если же для ра-
диуса а выполняется равенство a=(2m−1)λ0/2π, то полуцилиндр будет отражать как пре-
дельно диэлектрическая стенка, когда при y=0 имеем E0+ER=0, H0+HR=2. 

 
2.3. Невидимые тела  
 
2.3.1. Переходим к рассмотрению проблемы электромагнитного обнаружения тел, 

которые имеют два основных признака - геометрический и электрофизический. Наибо-
лее общей является задача обнаружения тела конечных размеров (рис.2.6,а) и при ко-
нечных значениях электрофизических параметров вещества: комплексной диэлектри-
ческой и магнитной проницаемостей εc=ε′−jε′′, µc=µ′−jµ′′. Интерес представляют также 
два частных случая: предельной геометрии, когда поверхность тела есть неограничен-
ная плоскость(рис.2.6,б); предельных электрофизических параметров, когда ε′→∞ 
(имеем предельный диэлектрик или идеальный проводник) либо когда µ′→∞ (предель-
ный магнетик). 

 В зависимости от относи-
тельных размеров тела 
lk0=2πl/λ0 различают обычно три 
задачи радиолокации [19], ко-
гда: 1) k0l>>1, 2) k0l≈1, 3) k0l<<1. 
Лишь в первом случае, когда 
длина волны гораздо меньше 
поперечного размера тела, мож-
но не только обнаружить объ-
ект, но и «рассмотреть» детали 
его геометрической формы. 
Именно для этого случая корот-
коволновой радиолокации далее 

будут исследованы возможности использования равнопроницаемого МД с целью 
уменьшения полей рассеяния. 

 Если прошедшее в тело поле обозначить как ET, то поле в окружающем простран-
стве удобно представить в виде суммы первичной и отраженной волн (см.(1.43)), а так-
же рассеянного поля: 

 E E E ER S= + +0 . 
 
Раздельное рассмотрение ER и ES необязательно, но целесообразно при проведении 

классификации вариантов обнаруживаемых тел (табл.2.1).  
 Таблица 2.1 

 тело  ER   ES   ET   параметры 
блестящее  ≠0  ≠0  ≠0 ε→∞ (µ→∞) 
видимое  ≠0  ≠0  ≠0 µc=µ0, εc≈−jε′′ 
«черное»  ≈0  ≠0  →0 εc/ε0=µc/µ0= −jα′′ 
невидимое  0  0  ≠E0 εr=µr=α 
отсутствует  0  0  E0 εr=µr=1 
 

 
Рис.2.6. Обнаружение тел: а) конечных размеров,  

б) с неограниченной поверхностью 



Наиболее заметным является металлическое тело (ε→∞) либо тело из предельного 
магнитного материала (µ→∞), введенного в теорию еще Макдональдом [20]. Внутри 
тела потерь энергии нет, отраженная волна обычно рассматривается для зеркального 
отражения, а рассеянное поле характеризует неравномерное рассеивание энергии отно-
сительно угла наблюдения ϑ  (рис.2.6,а). 

 Если тело проницаемо для поля (ET≠0), то отраженное и рассеянное поле, рассмат-
риваемые часто нераздельно, несколько слабее, чем в первом случае. Для обнаружения 
видимого тела без потерь существенно, что оно является либо немагнитным диэлектри-
ком (εr>1, µr=1) либо магнетиком без диэлектрических свойств (εr=1, µr>1), когда импе-
данс волны в теле есть Z Z r= 0 / ε  или Z Z r= 0 µ . Однако чаще всего, особенно в оп-

тическом диапазоне волн, наблюдаются столь существенные потери энергии, что в силу 
ε′<<ε′′ диэлектрические свойства вещества нивелируются. Рассеянное поле от такого 

тела с потерями обязано отличию от Z0 комплексного импеданса среды Z Z j r= − ′′0 / ε . 

 Следующим в таблице 2.1 указано «черное» тело, для которого вводились различ-
ные определения [20]. Используем определение по Зоммерфельду [20], когда «черное» 
тело характеризуется равенством 

 
 ε ε µ µ α α αc c j j/ /0 0= = ′− ′′ ≈− ′′ ,  (2.20) 

 
причем, обязательным является значительное преобладание потерь над диэлектриче-
скими и магнитными свойствами. Нивелировка диэлектрических и магнитных свойств 
среды означает, что согласно (2.20) используется не магнитодиэлектрик, а плохой про-
водник с уравновешением двух видов потерь (от электрических и магнитных токов). 
Для «черного» тела кроме сильного поглощения энергии (затухание поля обозначим 
как ET→0) наблюдается также рассеянное поле. Последнее может отсутствовать лишь 
при нормальном падении волны на плоскую границу «черного» полупространства, От-
мечается [20], что произвольное «черное» тело создает пренебрежимо малое отражение 
назад. 

 Невидимые (полнопрозрачные) тела заполнены равнопроницаемым МД без по-
терь. Ранее рассмотрены случаи полного прохождения плоской волны, нормально па-
дающей на плоскую границу однородного или произвольно неоднородного по про-
дольной координате равнопроницаемого МД. В параграфе 1.3 указаны условия полного 
прохождения сферической волны через сферическую границу. Несколько ниже пока-
жем также, что невидимыми являются изоимпедансные тела, имеющие характеристики 
проницаемостей вида (1.121), (1.122). Принципиальная возможность существования 
полной прозрачности для тел конечных размеров обнаружена недавно [4]. 

 Наконец, последняя строка в табл.2.1 отведена случаю совпадения электрофизиче-
ских параметров тела с параметрами воздуха, когда «граница» тела не может быть оп-
ределена с помощью электромагнитных волн.  

 
2.3.2. Использование изоимпедансных тел позволяет иметь рефракцию электро-

магнитной волны при отсутствии рассеянного поля [4]. Рассмотрим нормальное паде-
ние (рис.2.7,а) плоской волны с напряженностями 
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на круговой цилиндр, имеющий ось вдоль 
r
z0 , радиус ρ=a и заполнение неоднородным 

МД с проницаемостями по (1.121). Решение уравнений Максвелла для внутренней об-
ласти находится в виде суммы H-волн (относительно ζ=ϕ): 
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В зависимости от n2<N2 или n2>N2, 
где  N a a ao o

2 2 2 1 4 0 4 0 08= − > = ≈( / ) / , / , ,λ π λ   (2.23)  
для функций fn n( ), ( )ρ ψ ρ  используются представления:  
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Для функций Бесселя первого рода в (2.24) используются обычные обознaчения. 
На границе ρ=a имеем согласно (1.121) ε=ε0, µ=µ0, что обеспечивает по (2.24) 
 
 f J k a J k an n n n( ) ( ), ( ) ( )ρ ψ ρ= = ′0 0 , 

 E E j e J k a E ez
n jn

n
n

jk a= − =
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∞
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0( ) ( ) cosϕ ϕ . (2.25) 

В соответствии с (2.25), где использовано известное разложение по цилиндриче-
ским функциям, на границе наблюдается совпадение (2.25) с представлением (2.21) 
для первичного поля. Таким образом, "сшивание" (2.22) и (2.21) идет при отсутствии 
рассеянного поля. 

 
3.2.2. Рядам (2.22) можно придать [4] удобный для анализа вид, если рассматри-

вать поле вблизи границы - во внутреннем приповерхностном слое цилиндра. Харак-
теристики продольного и поперечного потоков энергии относительно направления па-
дения плоской волны при 0,95<ρ/a<1 равны 
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В соответствии с формулой (2.26) входящая (выходящая) через границу ρ=a энер-

гия соответствует вектору Пойнтинга в падающей плоской волне Πx E Z= 0
2

02/ . Су-

щественно, что непрерывность на границе имеет место не только для Πx , но и для 

Π Πy y
+ −= = 0 . Это означает, что искривление внутри цилиндра линий вектора Пойн-

тинга начинается лишь при отходе от границы и обусловлено ростом значений функ-
ции Пy(ρ,ϕ) по отношению к значениям функции Пx(ρ,ϕ). 

 Построение по (2.26), (2.27) линий вектора Пойнтинга выполнено на рис.2.7,б. 
Штриховая окружность указывает условную границу действия формул (2.26), (2.27) в 
приповерхностном слое, когда ln(ρ/a) является малой величиной. В работе [4] рассмот-
рен также неотражающий шар. 

 

 
Рис.2.7. Невидимый МД цилиндр (а), линии вектора Пойнтинга в приповерхностном слое (б), 

 устройство формирования пучка (в) 
 
 
2.3.3. Задача о невидимом цилиндре характеризуется отсутствием рассеянного по-

ля, что может быть использовано в устройстве, изображенном на рис.2.7,в. Между дву-
мя металлическими полуплоскостями 1,2 находится невидимый цилиндр 3, а слева на-
бегает плоская волна с напряженностями (2.21). Полуплоскости отражают падающую 
на них энергию, а цилиндр пропускает через себя часть энергии падающей волны.  

 С определенной степенью идеализации получаем, что за преградой имеем нулевое 
поле вблизи металлических полуплоскостей и первичное поле на поверхности полуци-
линдра. Таким образом формируется остронаправленное излучение в виде волнового 
пучка как «вырезки» из плоской волны. 

 
2.3.4. Приведенные выше результаты по составным плоско-сферическим волнам 

позволяют осуществить рефракторы из ранопроницаемых МД - покрытия для прово-
дящих тел, которые после этого становятся невидимыми для стороннего наблюдателя. 
Это будет иметь место, если выполнена согласованная рефракция, когда вне рефракто-
ра (в воздухе) присутствует лишь первичное поле.  

 Рассмотрим несколько вариантов рефракторов, выполненных из равнопроницае-
мых МД. Чтобы показать необычность предлагаемых рефракторов, будем их использо-
вать для создания невидимости блестящих тел (табл.2.1). Традиционные приемы ком-



пенсации полей рассеяния, когда применяется четвертьволновый согласующий слой 
диэлектрика или плавный переход, при этом оказываются недействующими. 
 Пусть тело конечных размеров освещено волновым пучком с поперечным размером 2a 
(рис.2.8,а). Поле рассеяния, воспринимаемое наблюдателем в точке Q1 или Q2, есть ре-
зультат дифракции волны на теле. В теоретических исследованиях чаще всего рассмат-
ривают дифракцию плоской волны с неограниченным фронтом, когда a→∞. 

 Для превращения блестящего тела в «невидимку» вначале нужно поместить его 
внутри металлического экрана с границей специальной формы. В свою очередь, на по-
верхность надевается «шуба» из составного МД (рис.2.8,б). С определенной степенью 
идеализации прохождение волны через каждую из двух половинок рефрактора можно 
описать с помощью представлений о составной волне А-В-С-В-А, где А соответствует 
плоскопараллельной волне в воздухе, а В,С отвечают плоскоосевым волнам в МД с 
проницаемостями по (1.121). По отношению к поперечной координате ξ, направления 
изменения которой указаны на всех четырех плоских границах скачка проницаемостей 
(рис.2.8,б), проницаемости изменяются в соответствии с рис.2.8,в. Наблюдатель, нахо-
дящийся в точке Q1 или Q2, воспринимает лишь поле первичной волны, что и означает 
невидимость тела. 

 
Рис.2.8. Рассмотрение рефрактора: а) падение волны на блестящее тело,  

б) размещение тела внутри экрана и составного МД, в) проницаемости МД 
 
 О наличии рефрактора можно судить лишь по изменению времени прохождения 

волны от точки Q1 до точки Q2. Вместо участка длиной 2а в однородной среде теперь 
составная волна проходит в МД путь, равный πa. Однако неясно, как в реальных усло-
виях измерить время дополнительного запаздывания 

 
 τ π[ ] ( ) / [ ]сек a c a м= − ≈ ⋅ −2 4 100

9 .  (2.28) 
 
Развитие предложенной идеи создания рефракторов представлено на рис.2.9. У 

рефрактора по рис.2.9,а может быть произвольный продольный размер 2a+d. Время за-
паздывания волны находится по (2.28). Рефрактор по рис.2.9,б создает несколько 
большее запаздывание на время τ π= 2 0a c/ , поскольку поперечный размер экрана вы-
рос до 4а. Указанный на рис.2.9,в рефрактор создает наибольшую задержку волны на 
время τ π= +( ) /3 2 0a h c . Теперь скрываемое внутри экрана тело может иметь произ-
вольные продольный и поперечный размеры, так как у экрана продольный размер d и 
поперечный размер 4a+2h могут быть произвольными. 

 



 
Рис.2.9. Варианты конструкций рефракторов: а) с произвольным продольным размером,  

б) с увеличенным поперечным размером, в) с произвольными продольным и поперечным размерами 
 
 Несколько иные рефракторы представлены на рис.2.10. Пусть слева на стенку из 

равнопроницаемого МД нормально к границе падает плоская волна. Проницаемости 
стенки могут подчиняться произвольной зависимости α(z), не создавая отраженной 
волны. Вместо части стенки шириной 4а (рис.2.10,а) вставлено металлическое тело, ко-
торое нужно сделать невидимым для наблюдателя. Для этого используется составной 
МД, по которому бежит составная волна А-В-С-В-А, где А соответствует плоскопарал-
лельным волнам, В - сфероточечным волнам, С - бисферической волне. На выходе та-
кой стенки волна будет иметь фронт с одной амплитудой, если время прямого прохож-
дения волны через стенку будет уравнено с временем движения энергии по составной 
траектории В-С-В. 

 Рисунок 2.10,б иллюстрирует возможности использования составных МД с бисфе-
рическими волнами в них для создания рефракторов, которые уводят энергию от ме-
таллической сетки, показанной с помощью штриховки. Для этого ее вначале нужно по-
крыть специальной формы металлическим экраном, а затем наложить части МД с про-
ницаемостями по (1.129). 

 
Рис.2.10. Рефракторы с использованием составной плоскопараллельной - сфероточечной - бисферической 

волны (а) либо только бисферических волн (б) 
 



2.4. Сочетание свойств полной прозрачности и поглощения 
 
2.4.1. У полнопрозрачных и «черных» тел общим в поведении является отсутствие 

отражения назад. Однако «на просвет» эти тела ведут себя совершенно по-разному: 
полнопрозрачное тело пропускает энергию далее, а «черное» тело стремится макси-
мально поглотить ее. Многочисленные исследования радиолокационных характеристик 
объектов [19, 20] позволили указать главные причины существования полей рассеяния. 
Среди них фигурируют: 1) зеркально отражающие участки (блестящие точки), 2) участ-
ки поверхности с малыми радиусами кривизны - ребра, острые углы и т.п. 3) «ползу-
щие» волны, возникающие на границе «свет-тень», 4) «бегущие» волны, возникающие 
при наклонном падении, 5) отражения от вогнутых участков поверхности. 

 Во всех указанных случаях можно ослабить рассеянное поле, если использовать 
накладки, оболочки из равнопроницаемого МД. По сути, МД создает рефракцию па-
дающей волны, сводя к минимуму дифракционные эффекты. 

 
2.4.2. Зеркальные отражения хорошо гасятся с помощью равнопоглощающего ма-

териала [20], однако эффективность этого способа снижается при наклонном падении, 
когда появляются «бегущие» волны. Совместное использование полнопрозрачного МД 
и «черного» поглотителя не позволит возбуждаться «бегущим» волнам. Пусть на по-
верхность некоторого тела 1 наложена поглощающая оболочка 2 (рис.2.11,а). Для соз-
дания условий падения на эту оболочку энергии только по нормали следует использо-
вать еще одну оболочку 3 из равнопроницаемого неоднородного МД без потерь. Если 
согласно п.1.2.2 проницаемости этого МД соответствуют закону изменения, представ-
ленному на рис.2.11,б, то происходит искривление линий энерговектора Пойнтинга так, 
что на выходе согласующего слоя энергия движется по нормали к границе (вдоль коор-
динаты ζ). 

 
Рис.2.11. Использование неоднородного МД для подачи энергии на поглотитель по нормали (а), 

 когда проницаемости МД изменяются согласно б) 
 
 
2.4.3. Для ослабления вклада в рассеянное поле острых участков поверхности так-

же полезно использовать накладки из равнопроницаемого МД. В параграфе 2.2 под-
робно описаны составные Т-волны, которые согласованно переходят из одной части 
составного МД в другую без создания дополнительных полей (рассеяния). Использова-
ние на изгибах поверхности тела накладок из МД с проницаемостями по (1.121) позво-
ляет поверхностным токам огибать острые углы так, чтобы не создавались так назы-
ваемые неравномерные плотности тока [19].  



 На рис.2.12,а представлена реализация указанной идеи, когда первичным полем 
является поле от штыревой антенны 1, размещенной на корпусе конечного размера. 
Благодаря накладкам из МД характеристика направленности излучения антенны, учи-
тывающая наличие корпуса радиостанции, будет отличаться от той, что соответствует 
использованию корпуса без накладок, приближаясь к характеристике излучателя с эк-
раном неограниченных размеров. В пределах верхней крышки 2 токи почти не будут 
ощущать ее конечных размеров. Вдоль поверхности корпуса теперь могут согласованно 
двигаться две встречно направленных волны тока. За счет размещенного снизу корпуса 
замедляющего МД (на рис.2.12,а обозначен цифрой 3) можно обеспечить любые же-
лаемые соотношения между этими волнами. Если же накладка 3 выполнена из равно-
поглощающего материала, то на верхней крышке не будут наблюдаться встречные вол-
ны токов. 

 Представленная на рис.2.12,б ситуация соответствует падению плоской волны на 
проводящее тело 1 в виде конуса конечной длины. Коническая часть тела покрыта сло-
ем МД без потерь (2), который осуществляет слабую рефракцию, направляя волну на 
поворотные накладки 3, выполненные из МД с проницаемостями по (1.121). Накладка 

4, сделанная из равнопоглощающего 
материала, поглотит энергию, «сня-
тую» конусом с участка S фронта па-
дающей волны. 
 

2.4.4. Рассмотрим принципы ис-
пользования равнопроницаемых МД 
и равнопоглощающих материалов 
для ослабления отражений от вогну-
тых участков металлической поверх-
ности. На рис.2.13,а показано, что на 
тело 1 следует наложить слой 2 по-
глотителя, а для подхода энергии па-

дающей волны по нормали к границе нужно использовать поворачивающие магнитоди-
электрические накладки 3. Если волна падает наклонно (рис.2.13,б), то используется 
уже известный согласующий слой 4 с проницаемостями по рис.2.11,б. Остальные части 
покрытий на рис.2.13,б те же, что и на рис.2.13,а. 

 
Рис.2.13. Использование МД для ослабления отражений от вогнутых участков для нормально (а)  

или наклонно (б) падающих волн 
 
2.4.5. Еще один пример удачного сочетания свойств полной прозрачности и погло-

щения наблюдается при использовании слоистого МД, изображенного на рис.1.22,а. 
Если магнитные пластины выполнить из стали, то к магнитной проницаемости добав-

 
Рис.2.12. Размещение рефракторов на острых углах: а) 
корпуса радиостанции, б) конуса конечной длины 



ляется свойство электропроводности. При малой толщине пластин плоская волна 
(1.161) будет распространятся почти без затухания, так как вектор электрической на-
пряженности перпендикулярен к поверхностям пластин. Но волна ортогональной поля-
ризации, т.е. с напряженностями (1.164), не сможет распространяться из-за сильного 
поглощения энергии в стальных пластинах. Это происходит в силу касательного харак-
тера вектора электрической напряженности к поверхностям пластин. 

 Итак, использование ферромагнитных пластин с заметными потерями создает до-
полнительные возможности для МД пластинчатой стенки, когда на нее падает волна с 
произвольной поляризацией. Горизонтально поляризованная волна (1.168) полностью 
проходит через стенку с минимальным отражением, зависящим по рис.1.23 от величи-
ны α. Волна с вертикальной поляризацией будет испытывать сильное поглощение в 
стенке, при этом отражение также можно свести к минимуму. 

 
 
2.5. Усиление эффекта давления волны 
 
2.5.1. Давно известно наличие силового действия электромагнитной волны в виде 

давления света на поверхность отражающего тела. Широкому использованию этого 
эффекта в технике препятствует его относительно малая величина. 

 При падении волны из воздуха по нормали к границе идеального проводника дей-
ствует давление, т.е. сила на единицу поверхности, которое находится по формуле 

 

 p t c E H0 0
0 0

02

0
02

2 2 2( ) /= = =Π ε µ .  (2.29) 
 

Формула (2.29) получается из выражения для половинной силы Ампера, действующей 
на участок проводника - квадрат (∆b)2: 
 

 F t IH b H b( ) / ( ) ( ) /= =µ µ0 0
0 2 22 2 2∆ ∆ . 

 
Удвоение по (2.29) давления происходит за счет наличия, кроме падающей, также и 

отраженной волны. Для оценки порядка величин, входящих в (2.29), рассмотрим два 
числовых примера. 

Пример 1. Найдем среднее во времени давление солнечного излучения. Плотность 
потока мощности излучения, приходящего на Землю, равна Πm Вт см≈ 0 14 2, / , по-
этому единица поверхности (1см2) металлического зеркала испытывает давление 

 
 p Н смm

0 10 29 4 10≈ ⋅ −, / .  (2.30) 
 
В силу малости величины (2.30) эффект давления солнечного излучения техниче-

ского применения не находит. 
Пример 2. Оценим порядок величины давления электромагнитной волны, которая 

распространяется по силовому кабелю при передаче электроэнергии частотой 50 Гц. 
Давление испытывает металлическая шайба, преграждающая путь движения энергии. 
По условиям электрической прочности можно взять амплитуду напряженности элек-
трического поля E кВ смm ≤ 20 / . Тогда по (2.29) имеем для амплитуды давления 

 
 p E Н смm m

0
0

2 3 22 7 10= ≈ ⋅ −ε / .  (2.31)  



 
Число по (2.31) значительно превышает давление солнечного излучения (2.30), од-

нако этого еще недостаточно, чтобы с помощью напора электромагнитной волны пере-
мещать массивные тела. 

 
2.5.2. Формула (2.29) подсказывает, что можно существенно повысить давление на 

металлическую стенку, если энергию на нее «подать» не из воздуха, а из равнопрони-
цаемого МД. При этом в силу зависимости 

 
 p v c pm m e m m= = =2 2 0

0Π / /αΠ α ,  (2.32) 
 

где ve есть скорость движения энергии в равнопроницаемом МД, имеем повышение 
давления в α раз. Аналогичный эффект мог бы наблюдаться и при наложении на зерка-
ло диэлектрического покрытия, если бы на границе воздух-диэлектрик не происходило 
отражения энергии назад в воздух. Таким образом, указанное в параграфах 1.1, 1.2 
свойство равнопроницаемого МД пропускать нормально падающую волну без отраже-
ния при любой величине α оказывается принципиально необходимым для движения 
отражателя под напором электромагнитной волны.  

 Например, создание МД с проницаемостями α=105 позволит согласно (2.32) увели-
чить давление (2.31) до весьма заметной величины p Н см Н мm = = ⋅700 7 102 6 2/ / . 

 
 2.5.3. От принципиального доказательства важности использования равнопроницае-
мых МД в электромагнитных «толкачах» перейдем к расчету одного из их возможных 
вариантов. В коаксиальном кабеле размещена шайба, состоящая из двух шайб: перед-
няя (толщиной h) выполнена из МД, а задняя сделана из хорошо проводящего металла. 
Поскольку металлическая шайба перекрывает путь движения энергии, то в кабеле су-
ществуют прямая и обратная волны с напряженностями 
  

 E E e em
jk z h jk z h= −− − − − − −ρ ρ ρ α α

0 0 1
1 1 10 0( )[ ( ) ] [ ( ) ] , 

 H E Z e em
jk z h jk z h= +− − − − − −ϕ ρ ρ α α

0 0 1 0
1 1 10 0( ) ( )[ ( ) ] [ ( ) ] . 

 
В МД шайбе имеем для комплексных напряженностей 
 

 E E e e Z H E e em
jk z jk z

m
jk z jk z= − = +− − − −

0 1
1

0 0 1
10 0 0 0ρ ρ ρ ρα α α α( ), ( ) . 

 
На поверхность металлической шайбы (z=0) действует сила как со стороны прямой, так 
и обратной волн: 

 F E d Em m= =∫2 2 40
2

0 0
2

1
2

2 1

1

2

παε ρ ρ παε ρ ρ ρ
ρ

ρ

ln( / ) .  (2.33) 

 Для проведения числовых оценок перейдем к напряжению и току прямой волны, для 
которых справедливы формулы 
 

 U I Z Z U Em m C m/ ( ) ln( / ), ln( / )= = =−
0

1
2 1 0 1 2 12π ρ ρ ρ ρ ρ .  (2.34)  

 
С учетом (2.34) формулу (2.33) можно представить в виде 
 



 F U Z Z U c Zm m C m C= =2 20
2

0
2

0αε α/ / .  (2.35) 
 

Если, например, взять Z Ом U кВC m= =50 20, , то имеем по (2.35) для силы со сто-
роны обеих волн, толкающих металлическую шайбу F Нm = ⋅α 0 05, . Если МД имеет 
проницаемости α=105, то эта сила будет весьма заметной: Fm=5 кН. Шайба весом m=100 
г под действием этой силы ускоряется с величиной a F m км секm= =/ /50 2 . 

 
2.5.4. Продолжим рассмотрение действия электромагнитной волны на металличе-

скую шайбу с МД накладкой, указав расчетные соотношения для процесса разгона этой 
шайбы от неподвижного состояния (когда скорость v =0 при t=t0) до движения с макси-
мальной скоростью v=vmax при t=t0+T. Для этого в коаксиальный кабель направляется 
волна с напряженностями 

 
 E HZ E s v t z E Em e m= = − =0 0 1( ) ( ), ( ) / ,ρ ρ ρ ρ   (2.36) 
 

где s(vet−z) - произвольная функция. Если рассматривается волна в воздухе, то ve=c0, а 
если в МД, то ve=c0/α.  

 Для дальнейших выкладок удобно взять волну в виде последовательности N пря-
моугольных импульсов напряжения длительностью τ с такими же интервалами между 
ними. Если полагать, что неподвижная граница воздух - МД соответствует t=0 и z=0, то 
первый импульс напряженностей пройдет в МД накладку при t>0, а коснется границы 
металлической шайбы z=h при t=t0=ah/c0. Ради простоты можно пренебречь пока сила-
ми противодействия движению (например, силой трения) и считать, что при t>t0 сразу 
начинается движение шайбы. Поскольку на интервале t0<t<t0+τ действует постоянная 
сила, определяемая по (2.35), то за счет неизменности ускорения Fm/m происходит ли-
нейное нарастание скорости шайбы по закону v=Fm(t−t0)/m от v=0 до v=v1=Fmτ/m. Во 
время паузы τ+t0<t<t0+2τ ввиду отсутствия силы шайба движется с постоянной скоро-
стью v=v1. Далее, при 2τ+t0<t<t0+3τ, происходит опять линейное возрастание скорости 
от v=v1 до v=v2=2v1. Так за время T (t0<t<t0+T), состоящее из сумм длительностей им-
пульсов Nτ и длительностей пауз (N−1)τ, т.е. T=(2N−1)τ, скорость будет изменяться по 
линейно-постоянному закону, достигая при t=T+t0 величины vN=Nv1=Fm(τ+T)/2m. 

 Порядок величины скорости vN оценим подстановкой из предыдущего раздела ве-
личины силы Fm=5 кН, наблюдаемой при ZC=50 Ом, Um=20 кВ. Имеем зависимость 
v T mN ≈ ⋅25 102 / , которая при T=1 сек, m=100 кг дает скорость vN=90 км/час. Если 
учесть силу трения, то скорость vN будет меньше. Кроме того, завышение величины 
скорости можно объяснить тем, что не учтено влияние скорости движения МД шайбы 
на напряженности полей. Обычно этим эффектом пренебрегают, поскольку из-за отра-
жения есть ограничение на проницаемость диэлектрика (εr<5), что сопровождается ма-
лой величиной относительной скорости движения диэлектрика: v v v ce r/ /= <<ε 0 1. 
Использование же равнопроницаемого МД с любой величиной α позволяет иметь от-
носительную скорость v=ve=vα/c0<1 сколь угодно близкой к единице. 

 
2.5.5. Выполним коррекцию предыдущих результатов путем учета изменения на-

пряженностей полей вследствие движения МД, для чего следует воспользоваться фор-
мулами электродинамики движущихся сред [21]. Кроме неподвижной системы коорди-
нат ρ,ϕ,z вводим систему ρ,ϕ,z′, перемещающуюся со скоростью v z v= 0  движения МД, 
то есть 

 z′=z−vt, ρ′=ρ, ϕ′=ϕ. 
 



Для подвижного наблюдателя напряженности электрического и магнитного полей 
в МД будут  

 ′ = + × ′ = − ×E t E t v t H t H t H t v t E t( ) ( ) ( ) ( ), ( ) ( ) ( ) ( )αµ αε0 0 . (2.37) 
 

Прямая волна имеет напряженности, получаемые путем подстановки (2.36) в (2.37): 
 

 ′ = ′ = − − =E Z H E v c s t z c E Em m0 0 0 0 11( )( / ) ( / ), /ρ α α ρ ρ ,  (2.38) 
 

поэтому мгновенный вектор Пойнтинга, «давящий» на подвижную шайбу, есть 
 

 ′ = − −−Π ( ) ( )( / ) ( / ).t Z z E v c s t z cm0
1

0
2

0
2 2

01ρ α α   (2.39) 
 
При воздействии в виде последовательности прямоугольных импульсов функция s 

равна единице во время существования каждого импульса и равна нулю во время пау-
зы. Так, во время действия n-го импульса ((n−1)τ+t0<t<t0+nτ) на металлическую шайбу 
со стороны прямой волны действует сила 

 ′ = ′ = −− ∫F t c d F v cm( ) ( / ) /2 1 20

1

0

2

1

2

πα ρ ρ α
ρ

ρ

Π ,  (2.40) 

где учтены равенства (2.33), (2.35), (2.39). 
 Для отраженной волны, кроме формулы (2.37), используем также и формулу (2.38), 

поскольку закон отражения о равенстве амплитуд падающей и отраженной волн теперь 
выполняется по отношению к движущейся границе, т.е. 

 
 − ′′ = ′′ = ′ + = − + −E Z H E v c E s t z c s t z c v cm0 0 0 0 0

21 1( / ) ( / ) ( / )[ ( / ) ]α α α α  
 
Аналогом формулы (2.39) будет выражение 
 
 ′′ = − − − +−Π Z z E v c s t z c s t z cm0

1
0

2
0

2 2
0 01[ ( / ) ] ( / ) ( / )α α α , 

 
поэтому для силы со стороны импульса отраженной волны имеем 
 

 ′′ = −F t F v cm( ) [ ( / ) ] /1 20

2 2α .  (2.41) 
 
 Полную силу, действующую во время существования каждого импульса на под-

вижную металлическую шайбу, получаем по (2.40), (2.41): 
 
 F t F v c v c v cm( ) [ / ( / ) / ( / ) / ]= − − +1 2 20 0

2

0

4α α α .  (2.42) 
 
Учитывая закон Ньютона, из (2.42) имеем для v(t) нелинейное дифференциальное 

уравнение 
 ′ = − − +v t F v c v c v c mt m( ) [ / ( / ) / ( / ) / ] /1 2 20 0

2

0

4α α α   (2.43) 
 

для скорости шайбы v(t) на интервале действия n-го импульса, когда скорость должна 
возрасти от vn−1 до vn. Решение уравнения (2.43) найти несложно, так как в нем разде-
ляются переменные. Поскольку все же αv/c0<1, то наиболее важным будет решение 
уравнения (2.43) в линейном приближении: 

 v
c v

c

F

mc
t tn m

n= − − −








−
−

0 1

0 0
11 1

α
α α

( ) exp[ ( )] , n=1,2,...N, 

где tn−1=t0+(n−1)τ. Например, при действии первого импульса, когда vn−1=0, tn−1=t0, имеем 
функцию 



 { }v c F t t mcm= − −0 0 01 exp[ ( ) / ] /α α ,  
 

которая совпадает с ранее полученной линейной зависимостью при 
0 10 0< − <<F t t mcmα( ) / . 

 Не исключено, что при больших скоростях движения МД нужно будет учитывать 
появление дополнительного отражения на границе воздух(1)- движущийся МД(2). По-
лагаем, что условия непрерывности справедливы для напряженностей в подвижной 
системе координат: 

 ′ = ′ ′ = ′E E H H1 2 1 2, .  (2.44) 
В воздухе падающая волна имеет 
 

 ′ = ′ = − −E Z H E s t z c v cm1 0 1 0 01( / )( / ) ,  (2.45) 
 

а для прошедшей в МД волны выполняется равенство 
 

 ′ = ′ = − −E Z H E s t z c v cm2 0 2 0 01( / )( / )α α .  (2.46) 
 
Конечно, при v c v c/ /0 0 1< <<α  различие между (2.45) и (2.46) незаметно, т.е. 

(2.44) выполняется автоматически. При невыполнении указанного неравенства гранич-
ные условия будут удовлетворены за счет появления отраженной волны и уменьшения 
амплитуды прошедшей волны.  

 Благодаря высоким величинам α вполне реальна ситуация, когда прямая волна в 
МД не успевает за движением шайбы, если скорость последней удовлетворяет неравен-
ству v>c0/α=vc. Например, при α=105 критическая скорость vc=3 км/сек соответствует 
синхронному движению МД и волны в нем, так что согласно (2.38) шайба не испыты-
вает давления со стороны прямой волны. Ясно, что формула (2.41) для силы действия 
отраженной волны имеет смысл при наличии отражения, когда 

 
 v<c0/α=vc.  (2.47) 
 
Условие (2.47) можно трактовать как ограничение на скорость шайбы, разгоняемой 

за счет напора электромагнитной волны. 
 По указанной методике может рассматриваться не только электромагнитный дви-

гатель, но и генератор электромагнитной волны. Для этого нужно допустить, что кроме 
напора электромагнитной волны на «толкатель» в противоположном направлении дей-
ствует более мощная внешняя сила. Изменение направления скорости в (2.37) и (2.38) 
дает для напряженностей падающей волны 

 
 ′ = ′ = − +E Z H E s t z c v cm0 0 01( / )( / )α α . 
 
За счет внешнего источника механической энергии происходит увеличение напря-

женностей полей в МД и соответственно возрастает плотность запасаемой в поле энергии 
 
 w E v c w= ′ = +αε α α0

2

0

2

01( / ) , 
 

где w0 - плотность энергии, запасаемой в волне, движущейся в воздухе.  
 Данный параграф раскрывает лишь малую часть возможных применений равно-

проницаемых МД в электромеханике. К изложенному, например, присоединятся коль-
цевые волны в неоднородных МД (см. параграф 1.4), использование которых естест-
венным образом позволит переводить напор электромагнитной волны во вращательное 
движение проводящего тела. 

 



ГЛАВА 3. ИЗОИМПЕДАНСНЫЕ ЦЕПНЫЕ СТРУКТУРЫ 
 
 

3.1. Моделирование волновых процессов с помощью цепных схем 
 
3.1.1. В предыдущих главах раскрыты положительные свойства волн в полнопроз-

рачных МД. Ключевой остается проблема искусственного создания материала с урав-
новешением диэлектрических и магнитных свойств в равнопроницаемых МД. После-
дующее изложение не будет опираться на использование эффектов поляризации и на-
магничивания вещества. Эти эффекты очень трудно на молекулярном уровне совмес-
тить воедино, и требуется большая работа материаловедов по созданию магнитоди-
электрических композитов с выполнением равенства εr=µr. Кроме того, доказано [6,7], 
что процесс намагничивания вещества в принципе исчезает в переменных полях высо-
кой частоты (обычно на частотах выше нескольких сотен МГц можно полагать µr=1).  

 В данной главе приводятся новые результаты по импедансно согласованным элек-
тродинамических структурам металло - воздушного исполнения. Вместо попыток соз-
дания в веществе на молекулярном уровне уравновешенных эффектов поляризации и 
намагничивания развивается идея обеспечения условий для неотражающего волнового 
процесса, т.е. выполнения равенства ZC=Z0 для конкретного типа волны. При этом во-
прос о трактовке эквивалентных εr,µr может и не возникать. Итак, далее используется 
аналогия между волной в сплошной МД среде без потерь (гл.1,2) и волной в эквива-
лентной цепной структуре без потерь. 

 Теоретические наработки удается перенести в область активных практических 
действий на основе следующего алгоритма создания полнопрозрачных структур: 

1. Анализ проблемы полной прозрачности выполняется с помощью уравнений 
Максвелла для неоднородных равнопроницаемых МД, 

2.  Под найденный (желаемый) волновой процесс указывается эквивалентная цеп-
ная схема, 

3. Создается электродинамическая цепная изоимпедансная структура в металло - 
воздушном исполнении путем реализации элементов цепной схемы-продольной индук-
тивности L и поперечной емкости C. 

 
3.1.2. Переходим к обоснованию предложенного метода реализации изоимпеданс-

ных структур. Рассмотрим симметричный четырехполюсник (рис.3.1,а). Входное со-
противление нагруженного четырехполюсника есть 
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Z Z Zвх C
C

C

=
+ + +

+ +
2 1 1 2 1

2 1

2 4

2

/ ( / ) /

/
.  (3.1)  

Из формулы (3.1) сразу видно условие согласованного соединения четырехполюс-
ников в цепную схему: входное сопротивление совпадает с сопротивлением нагрузки 
(Zвх=ZC), если 

 Z Z Z ZC1 2 1
24( / )+ = .  (3.2) 

 
Требование отсутствия потерь (Z1=jX1, Z2=jX2) при активном характере нагрузки 

(ZC=R) переводит (3.2) в условие того, что при всех частотах X1 и X2 должны иметь раз-
ные знаки: 

 − = + >X X R X1 2
2

1
2 4 0/ .  (3.3)  



Реализация условия (3.3) с помощью реактивных двухполюсников, содержащих 
положительные индуктивности и емкости, возможна только после введения в (3.3) 
приближения: 

 −X1X2≈R2 при |X1|/2≤0,1R.  (3.4) 
 
Действительно, подстановка в (3.3), например, X1=ωL дает X2= −R2/ωL−ωL/4. Если 

первое слагаемое в X2 после введения обозначения C=L/R2соответствует емкости C, то 
второе слагаемое есть сопротивление нереализуемой отрицательной индуктивности. 
Условия (3.4) можно также трактовать как ограничение по частоте для схемы с X1=ωL, 
X2= −1/ωC, когда согласно (3.2), (3.4) имеем 
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.  (3.5) 

Заметим, что входящая в (3.5) частота ω0 носит название частоты среза. 
На рис.3.1,б представлена цепная схема, состоящая из двух четырехполюсников, 

изображенных на рис.3.1,а. Кроме раздельного выполнения соотношений (3.4), (3.5) 
для каждого из четырехполюсников, потребуем удовлетворения совместных условий 

 
 L′/C′=L′′/C′′ при L′C′≠L′′C′′.  (3.6) 
 

 
Рис.3.1. Симметричный четырехполюсник (а) и цепная схема (б) 

 
Очевидно, что за счет (3.6) имеем импедансно согласованную цепную схему, когда 

Zвх=ZC. Для сравнения напомним, что схема по рис.3.1,б может быть и схемой замеще-
ния соединения двух кабелей ( ′ ≠ ′′Z ZC C ), если выполняются соотношения: 

 
 L′C′=L′′C′′ при L′/C′≠L′′/C′′.  (3.7) 
 
Итак, изоимпедансная цепная схема и «равноскоростная» цепная схема характери-

зуются разными соотношениями (3.6), (3.7) между параметрами звеньев. 
 Далее необходимо учесть особенности объединения цепных схем двух типов, по-

скольку так моделируется ситуация, имевшая место в гл.1,2 для волн в МД: эти волны 
входили (выходили) в неоднородный МД из воздуха. 

 
3.1.3. Рассмотрим некоторые свойства схемы замещения отрезка длинной линии 

без потерь. Известно, что в матричном уравнении 
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элементы матрицы [a] есть 
 a a k l a Z a Z jC C11 22 0 12 21= = = = =cos cos , / sinθ θ ,  (3.8) 
 

где волновое число k0, волновое сопротивление линии ZC находятся по индуктивности 
и емкости на единицу длины: 

 k L C v Z L CC0 0 0 0 0= = =ω ω / , / .  (3.9) 

 
Воздушное заполнение линии, обеспечивая максимальную скорость передачи энергии 
v=3⋅108 м/с, связывает L0,C0 согласно (3.9) равенствами 
 

 L0=ZC/v, C0=1/vZC.  (3.10) 
 

Важно отметить, что для обычной длинной линии независимо можно задавать лишь 
одну из трех величин L0,C0,ZC, получая две остальные по (3.10). 
 Схема замещения отрезка длинной линии в виде симметричного четырехполюсника 
(рис.3.1,а) с учетом (3.9) имеет сопротивления 
 

 Z a a jZ tg Z a jZC C1 11 21 2 212 1 2 1/ ( ) / ( / ), / / sin= − = = = −θ θ .  (3.11) 
 

Соотношения (3.4), введенные для схемы замещения линии, означают условия малости 
ее электрической длины. Действительно, при θ<<1 имеем из (3.11) 
 

 Z j lL j L, Z j lC j C1 0 2 01 1= = = =ω ω ω ω/ / , 
 

причем, согласно (3.4) должно выполняться: 
 

 ω ω ω ω π λ/ / / / ,0 0 0 02 2 0 1= = = ≤L l R RC l l .  (3.12) 
 
3.1.4. Рассмотрим три варианта схем моделирования волновых процессов (рис.3.2). 

По рис.3.2,а имеем два отрезка кабеля с совпадающими волновыми сопротивлениями, 
так что погонные параметры удовлетворяют системе равенств 

 
 L′/C′=L′′/C′′, L′C′=L′′C′′. 
 

Представленная на рис.3.2,б схема соответствует ступенчатой (неоднородной) длинной 
линии, когда 

 L′/C′≠L′′/C′′, L′C′=L′′C′′. 
 

Схема по рис.3.2,в моделирует изоимпедансный волновой процесс, определяемый ус-
ловием согласования 

 ′ = ′ ′ =Z L C L CC 0 0/ / .  (3.13) 

При этом звено LC должно обеспечить эквивалентное запаздывание на время τ′′, 
превышающее в α раз запаздывание τ′ волны в отрезке кабеля. Последнее находится по 
скорости v′: 

 ′ = ′ =τ l v l L C/ .0 0   (3.14) 

 



 
Рис.3.2. Соединения: а) двух отрезков одного кабеля, б) двух отрезков кабелей с разными волновыми со-

противлениями, в) кабеля и звена цепной структуры 
 
Четырехполюсник (рис.3.1,а) создает запаздывание τ′′, которое можно вычислить с 

помощью характеристической фазовой постоянной bC: 
 

 j b Z ZCsin( / ) / .2 41 2=   (3.15) 

 
Подстановка в (3.15) Z j L,Z j C1 2 1= =ω ω/  дает: 
 

 b LCC = 2 2arcsin( / ).ω  
 

Поскольку bC играет роль фазы, то время запаздывания есть 
 

 ′′ = ≈τ ωb LCC / ,  (3.16) 
 

если учесть неравенства из (3.5). По (3.13), (3.14), (3.16) имеем требуемые параметры 
замедляющего звена: 

 L lL C lC= =α α0 0, .   (3.17) 
 
Итак, по известным параметрам L0,C0 отрезка l длинной линии и заданному коэф-

фициенту замедления волны α находятся согласно (3.17) параметры замедляющего зве-
на, которое удовлетворяет условию (3.13) импедансного согласования. Напомним, что 
для замедляющего звена должно выполняться условие частотной независимости ZC по 
(3.5). Формулам (3.17) можно дать еще такую трактовку: Т-образное звено (сосредото-
ченная нерегулярность) вставлено вместо отрезка l однородного фидера, имевшего ин-
дуктивность L′=L01 и емкость C′=C01, поэтому звено будет замедлять в α раз, если его 
параметры L,C имеют увеличенные значения по сравнению с L′,C′. 

 
 
3.2. Реализация изоимпедансных цепных структур 
 
3.2.1. Изоимпедансная цепная структура в предыдущем параграфе определена как 

металлическая конструкция, каждое звено которой состоит из реализаций продольной 
индуктивности и поперечной емкости на длине звена (рис.3.3,а). Цепная структура ха-
рактеризуется условием изоимпедансности 

 

 Z L C L C R n NC n n n n= = = = −+ +/ / , , ,...1 1 1 2 1  (3.18) 

 



при наличии у n-го звена свойства замедления скорости волны в αn раз (vn=3⋅108/αn) по 
сравнению со скоростью v в подводящих (входных) участках фидера за счет выбора со-
отношения 

 v v L C l L Cn n n n/ / .= =2
0 0 α   (3.19) 

 
Если все числа αn=1, то цепная структура будет воспроизводить поведение фидера с 

воздушным заполнением, поэтому для исключения из рассмотрения этого тривиально-
го случая далее полагаем αn>1. Попутно для всех звеньев принята одна и та же длина l, 
чтобы не иметь в (3.19) ложного эффекта замедления, возникающего при αn=1 за счет 
удлинения звена, когда Ln=1nL0, Cn=1nC0. 

 Реализациям индуктивностей и 
емкостей для различных рабочих 
частот посвящено огромное число 
работ, поскольку эта проблема все-
гда существовала при создании 
электрических фильтров. Имеются 
определенные трудности воспроиз-
ведения больших величин этих 
элементов и для высоких частот. 
Уместен вопрос: почему при созда-
нии изоимпедансных структур сле-
дует использовать именно сосредо-
точенные элементы L,C? Ответ на 
этот вопрос кроется в соотношени-
ях (3.5). Их выполнение означает 
частотно независимый характер 
эффекта полной прозрачности 
вплоть до частоты 0,1f0. Таким об-

разом, каждое звено изоимпедансной структуры имеет в качестве параметра частоту 
среза 

 f L C RC R Ln n n n n0 1 1= = =/ / / ,π π π   (3.20) 

 
определяющую окно полной прозрачности звена: 0 0 1 0< <f f n, . Отрезок фидера l по 
аналогии с (3.20) характеризуется частотой  
 

 f l L C0 0 01= / π .  (3.21) 

 
На основе (3.19) - (3.21) имеем формулы: 
 

 L R f C Rfn n n n= =α π α π/ , / .0 0   (3.22) 
 
Итак, если для изоимпедансной структуры (рис.3.3,а) выбран прототип по рис.3.3,б, 

то по отношению к этому прототипу параметры звеньев Ln,Cn изменяются согласно 
(3.20) пропорционально изменению параметров замедления αn. 

 
 

 
Рис.3.3. Цепная структура (а), ее фидерный прототип (б),  

укороченная цепная структура (в) 



 Ограничение на длину l вытекает из (3.4), и проверять его нужно не по (3.12) для 
фидера, а для звена изоимпедансной структуры: 

 
 π α λ π λl ln n/ / ,0 0 1= ≤ .  (3.23) 
 

При выполнении (3.23) в силу αn>1 заведомо выполняется условие (3.12). 
Использование известной теории характеристических параметров четырехполюс-

ника позволяет в случае необходимости найти ток и напряжение в любом сечении изо-
импедансной структуры по формуле 

 

 I I U U e en n
j R C jk ln n

1 1
0/ /= = ∑ = ∑ω α ,  (3.24) 

 
где учтены выражения (3.21), (3.22). 

 
3.2.2. Одному и тому же фидерному прототипу (рис.3.3,б) можно поставить в соот-

ветствие два варианта изоимпедансной структуры. Первый из них (рис.3.3,а) имел те же 
длины d,l, что и прототип. Рассмотрим теперь другой вариант изоимпедансной струк-
туры (рис.3.3,в), обеспечивающей с фидерным прототипом одинаковое время запазды-
вания τ . Для фидера длиной d это время есть τ=d/v, которое будет наблюдаться с уче-
том (3.24) для волны в изоимпедансной структуре укороченной длины 

 ′ = ′ = <
=
∑d Nl Nd dn
n

N

/ α
1

. 

Относительное уменьшение длины звена есть 

 ′ = <
=
∑l l N n
n

N

/ / α
1

1.  (3.25) 

С учетом укорочения звена в формуле (3.19) следует использовать вместо l величину 1′, 
что при неизменности частоты f0 звена прототипа (3.21) дает вместо (3.22) формулы 
 

 L Rl l f C l l Rfn n n n= ′ = ′α π α π/ , / ,0 0   (3.26)  
 

где фигурирует относительное укорочение звена (3.25). Сравнение (3.22), (3.26) пока-
зывает, что параметры звена укороченной изоимпедансной структуры (рис.3.3,в) имеют 
меньшие величины, чем соответствующие параметры звена по рис.3.3,а. При этом окно 
полной прозрачности звена расширяется, поскольку подстановка (3.26) в (3.20) приве-
дет к увеличению f0n в (1/1′) раз. 

 Укорочение звена структуры позволяет упростить выполнение условия (3.4), так 
как теперь вместо (3.23) нужно обеспечить выполнение соотношения 

 
 π1′αn/λ0=π1′/λn≤0,1.  (3.27) 
 

Очевидно, что условие (3.27) достаточно проверить для звена с наибольшим парамет-
ром αn=αmax. 

 
3.2.3. Отдельные варианты согласованных структур описаны в литературе. Напри-

мер [22], диэлектрическая опора закреплена на более тонком внутреннем проводнике 
коаксиального кабеля (рис.3.4,а) так, что создается компенсирующий эффект для отра-
жений от увеличенной емкости и увеличенной индуктивности. В [22] на рис.4.41 изо-



бражена замедляющая структура в виде проводника с двойными прорезями, что обес-
печивает понижение фазовой скорости без увеличения волнового сопротивления. 

 На рис.3.4,б показано звено из двух емкостей и индуктивности в полосковом ис-
полнении, где вносимые емкости и индуктивность подобраны согласно требованию 
(3.18). Конструкция неотражающей нерегулярности двухпроводной линии представле-
на на рис.3.4,в, где отражение от емкости (за счет использования диэлектрика) компен-
сируется отражением от дополнительной индуктивности, созданной за счет увеличения 
расстояния между проводами. 

 
Рис.3.4. Примеры выполнения звеньев неотражающей цепной структуры: а) шайба в кабеле,  

б) неоднородность в полосковой линии, в) опора для двухпроводной линии 
 
 Следует также напомнить, что электрические фильтры нижних частот имеют схе-

му замещения по рис.3.3,а, но с параметрами, несколько отличающимися от величин 
Ln,Cn для изоимпедансной структуры, определяемых по (3.18). За счет этого отличия 
можно решать проблему обеспечения заданной крутизны характеристики затухания на 
границе полосы пропускания и полосы задерживания. 

 
3.3. Цепные структуры с антенными входами 
 
3.3.1. Описанные в предыдущих параграфах цепные структуры возбуждались с по-

мощью направляемой волны в фидере. Однако в ряде случаев первичная волна является 
свободно распространяющейся, поэтому до предложенной цепной структуры необхо-
димо разместить однонаправленный волновой возбудитель - неотражающий волновой 
преобразователь (НВП). 

 Рассмотрим постановку задачи создания НВП. Пусть имеется N фидеров 
(рис.3.5,а), которые нужно возбудить, т.е. создать продольные токи проводимости, с 
помощью плоской волны, падающей слева. В области НВП1 должна расположиться не-
которая конструкция, переводящая без потерь энергию свободно распространяющейся 
волны в энергии N фидерных волн. Главным требованием к НВП1 является условие со-
гласованного преобразования, т.е. отсутствия отражения назад. Использование НВП2 
на выходе позволит уйти энергии вправо в виде свободно распространяющейся волны. 

 При наличии НВП1, НВП2 можно будет в фидерную область D внедрить на участ-
ке D0 N цепных изоимпедансных структур, oписанных выше. Тогда все вместе они бу-
дут воспроизводить электромагнитный процесс, подобный волне в равнопроницаемом 
кусочно-однородном или неоднородном МД (гл.1). 

 Для поставленной задачи о НВП можно увидеть аналогию с переизлучающими 
решетками Ван-Атта или устройствами оптического типа для возбуждения элементов 
антенной решетки [23]. 

 Опишем два подхода к созданию НВП. По первому из них преобразование волн 
может быть организовано за счет плавного перехода свободно распространяющейся 
волны в направляемые волны. Условно это показано на рис.3.5,б для приемной антен-



ной системы, состоящей из симметричных вибраторов с нарастающей длиной, подклю-
ченных к двухпроводному фидеру. Конструкция подобного типа используется на прак-
тике в виде приемной антенны бегущей волны. Для создания неотражающего действия 
(плавности перехода) необходима некоторая длина d. 

 Для второго направления плодотворной является идея возбудителя Гюйгенса, ко-
гда процесс возбуждения плоской волны передается только слева направо за счет кар-
диоидного вида диаграммы направленности возбудителя - совокупности электрическо-
го и магнитного излучателей (рис.3.5,в). Простейшей приемной антенной, имеющей, 
как и возбудитель Гюйгенса, кардиоидную диаграмму направленности, является сово-
купность электрического вибратора и магнитной антенны в виде рамки. Поэтому и 
предлагается из N подобных антенных элементов создавать НВП1 для возбуждения N 
фидеров. 

 
Рис.3.5. К созданию неотражающего волнового преобразователя (а), НВП в виде антенны бегущей волны 

(б), источник Гюйгенса (в) 
 
 
3.3.2. Каждый из фидеров, представленных на рис.3.5,а, может быть заменен соот-

ветствующей изоимпедансной цепной структурой. Покажем это на примере перехода 
от отрезка полосковой линии (рис.3.6,а) к замедляющему звену цепной структуры 
(рис.3.6,б). За счет уменьшения ширины полоска в a0/a раз происходит увеличение ин-
дуктивности в соответствии с формулой (3.17) в α раз. Ранее отрезок полосковой линии 
имел индуктивность, приближенно вычисляемую по формуле 
 

  L′=µ0b010/a0,  (3.28) 
 

а индуктивность звена цепной структуры есть 
 

 L=µ0b010/a,  (3.29) 
т.е. в соответствии с (3.17) имеем  

 α=L/L′=a0/a.  (3.30) 
 
 Для выполнения условия изоимпедансности (3.18) нужно в α раз увеличить ем-

кость звена, для чего в начале и в конце звена производится уменьшение зазора в b0/b 



раз. В силу доминирующей роли этих участков полагаем, что емкость звена теперь вы-
числяется по формуле 

 C≈ε0la/b,  (3.31) 
 

в то время как ранее отрезок полосковой линии имел 
 

 ′ ≈C l a bε0 0 0 0/ .  (3.32) 
 

Сравнивая (3.31), (3.32), получаем для коэффициента замедления  
 

 α = ′ =C C lab l a b/ /0 0 0 .  (3.33) 
 

Условие изоимпедансности (3.18) уже косвенно учтено введением в (3.30), (3.33) оди-
накового обозначения α, что должно сопровождаться по 
(3.30), (3.33) равенством 
 

 a a lb l b0
2 2

0 0/ /= . 
 
Формулы (3.28), (3.29), (3.31), (3.32) взяты прибли-

женными ради простоты, чтобы нагляднее продемонст-
рировать принцип перехода от отрезка линии к замед-
ляющему изоимпедансному звену. 

3.3.3. С использованием технических решений, 
представленных на рис.3.5, 3.6, рассмотрим конструк-
цию устройства (рис.3.7,а), осуществляющего согласо-
ванный поворот волны в соответствии с предложением 
по рис.2.4,а. Волна бежит вдоль одной грани клина к 
ребру, проходя вначале через волновой преобразователь 
НВП1, превращаясь в N фидерных волн (на рис.3.7,а это 
три фидера: а,b,с). Поворот волны осуществляется с по-
мощью изоимпедансной цепной структуры, имеющей 
три канала а,b,с с четырьмя звеньями в каждом из них 
(1,2,3,4). Согласно формуле (1.121) величины замедле-
ния в каждом из каналов должно быть разными. Пусть, 
например, по отношению к радиусу скругления ρ0 ра-

диусы закругления каналов есть 
 
 ρ ρ ρ ρ ρ ρa b c= = =2 4 60 0 0

, , .  (3.34) 

 
Тогда для требуемых коэффициентов замедления имеем 
 

 α ρ ρ α α α αa a b a c aa a= = = =/ / , , , ,2 0 5 0 330 ,  (3.35)  
 

где число а берется с выполнением условия a≥ρN, чтобы иметь для наиболее длинного 
канала αN=a/ρN≥1. 

 

 

 
Рис.3.6. Переход от полосковой линии (а) 
к изоимпедансной цепной структуре (б) 



 
Рис.3.7. Поворотное волновое устройство (а), реализация канала замедляющей цепной структуры (б) 

 
 Деление канала на звенья производится с учетом требования малости искривления 

пути движения энергии в пределах угла ∆ϕ, т.е. при замене части окружности (cc′) ло-
маной линией, состоящей из отрезков прямых 1,2,3,4. На рис.3.7,б в развернутом виде 
представлен один канал (с) замедляющей цепной структуры, состоящей из четырех 
звеньев. По отношению к полосковому фидеру увеличение индуктивности выполнено 
за счет сужения ширины полоска hc, а дополнительные емкости реализованы в виде бо-
ковых выступов dc. Звенья b,a будут иметь различные длины 1b,1a, связанные согласно 
(3.34) с 1c равенствами 

 lb=2lc/3, 1a=1c/3. 
 

Поскольку по (3.35) коэффициенты замедления различны в каналах, то в конструкциях 
для каналов b,a (по рис.3.7,б) величины hb,db и ha,da будут иными по сравнению с hc,dc. 

 
 
3.4. Изоимпедансные структуры для Е,Н -волн 
 
3.4.1. Интерес к замедленым Е-волнам возник давно в связи с необходимостью их 

использования в электронных приборах [24] и ускорителях частиц так, чтобы скорость 
движения волны была близка к скорости движения электрона. Рассмотренные ранее 
цепные структуры осуществляли замедление Т-волн, не имеющих продольной состав-
ляющей напряженности электрического поля. Поэтому такие структуры нельзя исполь-
зовать для эффективного воздействия на продольно движущийся пучок электронов. В 
связи с этим целесообразно рассмотреть изоимпедансные структуры, воздействующие 
на Е,Н-волны при наличии продольных составляющих напряженностей электрического 
(магнитного) поля. 

 Такое рассмотрение окажется также полезным для решения задач поворота Е,Н-
волн в изгибах металлических или диэлектрических волноводов. 

 
3.4.2. При наличии Н-волны в волноводе его короткий отрезок можно также пред-

ставить виде симметричного четырехполюсника по рис.3.1,а. Поскольку для волнового 
сопротивления ZC

H  и продольного волнового числа β есть формулы 
 

 Z Z kC
H

c c= − = −0
2

0
21 1/ ( / ) , ( / )λ λ β λ λ ,  (3.36) 



то с учетом малости величины βl=θ<<1 имеем из (3.11) представления для Z1,Z2, вхо-
дящих в схему замещения: 

 Z j L Z j C j L1 1 2 21 1= = +ω ω ω, / ( / ) ,  (3.37) 

где  L l C l L lc1 0 0 2 0
2 24= = =µ ε µ λ π, , / .  (3.38)  

 
В соответствии с равенствами (3.37) на рис.3.8,а изображена схема замещения коротко-
го отрезка волновода с Н-волной. 
 

 
Рис.3.8. Схема замещения отрезка волновода с Н-волной (а),  
реализация схемы замещения с изменением ее параметров (б) 

 
 Подстановка (3.37) в формулу (3.2) дает прежнее выражение для ZC

H  из (3.36), если в 
представлении  

 Z ZC
H

c= −0
21/ ( / )ω ω   (3.39) 

положить  

 ωc L C Z L C= =1 2 0 1/ , / ,  (3.40) 

 
и при условии, что рабочая частота ограничена с двух сторон:  
 

 ω ω ωc L C L C< < = +0 1 0 1 1 40 2 1, , / / .  (3.41) 

 
Можно выполнять согласно (3.40) определенные изменения параметров L1,L2,C схемы 
замещения (рис.3.8,а), не меняя ωc,Z0, а, значит, по (3.39) и сопротивление ZC

H  на всех 
рабочих частотах (3.41). А именно, если вместо параметров ′ ′ ′L L C1 2, , , отвечавших уча-
стку однородного волновода, взять параметры звена изоимпедансной структуры в соот-
ветствии с равенствами 

 ′′= ′ ′′ = ′ ′′ = ′L L L L C C1 1 2 2α α α, / , ,  (3.42) 
 

то это звено будет идеально согласованно с прежним волноводом. Величина коэффи-
циента α скажется на времени запаздывания, вносимом звеном изоимпедансной струк-
туры. Формулу для нахождения времени запаздывания имеем, подставляя (3.37) в 
(3.15): 

 τ ω ω= −L C c1
21 ( / ) .  (3.43) 

 
Поскольку, согласно (3.40) замены по (3.42) не влияют на ωc, то имеем по (3.43)  



 
 τ′′=ατ′.  (3.44)  
 
Коэффициент α в (3.44) теперь может быть как больше, так и меньше единицы, ес-

ли реализовывать ′′> ′ ′′ < ′ ′′ > ′L L L L C C1 1 2 2, ,  либо создавать ′′< ′ ′′ < ′ ′′ < ′L L L L C C1 1 2 2, , . При 

α>1 переход по (3.42), т.е. замена отрезка волновода на звено изоимпедансной структу-
ры, дает относительное увеличение времени запаздывания волны в α раз. Соответст-
венно, при α<1 наблюдается относительное ускорение Н-волны. 

 На рис.3.8,б представлено согласованное замедляющее звено в прямоугольном 
волноводе, где согласно (3.42) выполнено увеличение L1 за счет расширения металли-
ческой трубы в вертикальной плоскости (вверх, вниз). Увеличение емкости С происхо-
дит благодаря использованию диэлектрика D, а уменьшение L2 обязано расширению 
трубы в горизонтальной плоскости (влево, вправо). В качестве основной волны высту-
пает волна H10, имеющая для (3.38) λc=2a. 

 
 
3.4.3. Исследование замедляюще-ускоряющего звена изоимпедансной структуры 

для Е-волны производится аналогично. Исходим из формул 
 

 Z Z kC
E

c c= − = −0
2

0
21 1( / ) , ( / ) ,ω ω β ω ω  

 
подстановка которых в (3.11) дает для сопротивлений схемы замещения 
 

 Z j L j C Z j C1 1 1 2 21 1= + =ω ω ω/ , / ,  (3.45) 

где  L l C l C l lc c1 0 2 0 1 0
2

0
2 21 4= = = =µ ε µ ω ε λ π, , / / . 

 
Формулам (3.45) отвечает схема замещения, изображенная на рис.3.9,а. Вместо 

уравнений (3.40) теперь справедливы равенства 
 

 ωc LC Z L C= =1 1 0 2/ , / , 

 
рабочая частота ограничивается согласно неравенству 
 

 ω ω ωc LC LC< < = +0 1 0 1 1 40 1 2, , / / . 

 

 
Рис.3.9. Схема замещения звена с Е-волной (а),  

реализация замедляющего звена изоимпедансной структуры (б) 



 
Размещение вместо отрезка волновода звена изоимпедансной структуры означает 

переход от параметров ′ ′ ′L C C, ,1 2  к параметрам: 
 
 ′′ = ′ ′′= ′ ′′ = ′L L C C C Cα α α, / ,1 1 2 2 .  (3.46) 

 
Подстановка (3.45) в (3.15) дает для времени запаздывания 
 

 τ ω ω= −LC c2
21 ( / ) .  (3.47) 

 
С использованием (3.46) в (3.47) и с учетом неизменности ωc имеем для относи-

тельного времени запаздывания прежнюю формулу (3.44). 
 На рис.3.9,б указано замедляющее звено изоимпедансной структуры, где согласно 

(3.46) выполнено увеличение в α раз продольной индуктивности L и поперечной емко-
сти C2, а также уменьшение продольной емкости C1. Круглый волновод с диаметром 2а 
имеет для волны E01 критическую длину λc=2,613a. У звена изоимпедансной структуры 
диаметр увеличен до величины 2(а+b), что обеспечивает увеличение индуктивности L. 
Повысить поперечную емкость можно за счет использования шайбы из диэлектрика D. 
Эта шайба, втягивая из приосевой области линии вектора напряженности электриче-
ского поля, удлиняет их, что можно трактовать как уменьшение продольной емкости. 

 



ЗАКЛЮЧЕНИЕ 
 

 Ввиду особой важности проблемы реализации полнопрозрачных сред и структур 
проведем сравнительный анализ всех рассмотренных выше возможностей решения 
этой проблемы, привлекая также справочные данные по электротехническим материа-
лам [25]. 

 На рис.А представлены графики, позволяющие определить длину волны λ в рав-
нопроницаемом МД, если проницаемости есть 1<α<106. Например, при частоте f=1 
МГц длина волны в воздухе λ0=300 м, но при использовании МД с α=100 имеем λ=3 м. 
Существующие возможности создания ферромагнитных материалов определяются об-
ластью, которая на рис.А ограничена штриховой линией М. Эта область состоит из по-
лос 1-6, для которых имеем данные [25]: 

1. 1<µr=α<10 - технически чистое железо, 
2. 10<α<100 - магнитодиэлектрики типа альсифера, 
3. 102<α<103 - электротехнические стали, 
4.  103<α<104 - ферриты, 
5. 104<α<105 - высокопроницаемые ферриты, 
6.  105<α<106 - магнитомягкие и аморфные сплавы. 

 
Рис. А. Возможности участия магнетиков (М) и диэлектриков (Д) в создании равнопроницаемых МД 

 
Общая закономерность состоит в том, что увеличение магнитной проницаемости 

сопровождается уменьшением диапазона рабочих частот для этого материала. Остается 
открытым вопрос о возможности создания ферромагнетика с µr>106 при f<100 Гц (об-
ласть 7). С другой стороны, при f>100 МГц исчерпываются возможности ферромагне-
тиков по участию в созданиии равнопроницаемых МД, ибо µr≈1. 

 Для диэлектриков область D имеет границу гораздо дальше по частоте, ибо, на-
пример, существуют сегнетоэлектрики с εr=α>105 при f=100 МГц. Для полос 1-6 имеем 
[25]: 

1. 1<εr=α<10 - стекло, слюда, фарфор, бумага, 
2. 10<α<100 - керамика с небольшой проницаемостью εr, 
3. 102<α<103 - керамика с повышенной εr, 
4. 103<α<104 - сегнетокерамика, 
5. 104<α<105- сегнетокерамика, 
6. 105<α<106 - сегнетоэлектрики. 



 На частотах 1 Гц<f<108 Гц области М и D перекрываются, что позволяет реализо-
вывать равнопроницаемый МД по методам 1 и 3, указанным в п.1.6: фабриковать МД 
из магнитных и диэлектрических частиц либо из готовых изделий - магнитных и ди-
электрических пластин (стержней). Методика получения искусственного МД из элек-
трических и магнитных диполей (металлических шариков и рамок [4]), по-видимому, 
должна пройти через этапы теоретической и экспериментальной детализации, подоб-
ные тем, что в последние годы выполнены для так называемых киральных сред [26].  

 Наконец, для исследованных в главе 3 цепных изоимпедансных структур также 
имеются определенные трудности реализации, которые нужно будет преодолевать. На 
рис.В представлены графики, которые позволяют определить эквивалентные парамет-
ры L,C звена цепной структуры с импедансом Zc=100 Ом. Прямая α=1 соответствует 
отрезку кабеля, длина которого изменяется, если рассматривается другая рабочая час-
тота f. 

 
Рис. В. Продольная индуктивность и поперечная емкость звена замедляющей цепной структуры 
  
Например, при рабочей частоте f=109 Гц нужно брать длину отрезка 1≤λ0/30=1 см, 

чтобы выполнялось условие малости 1/λ0<<1. Отрезок кабеля 1=λ0/30 будет иметь для 
схемы замещения индуктивность lL L0 0 0 30= λ / =3,3 нГ и емкость 

λ λ0 0 0 0
230 30C L Zc/ /=  =0,33 пф. При переходе от отрезка кабеля к звену изоимпеданс-

ной структуры, замедляющей в α раз, нужно воспользоваться соответствующей прямой 
на рис.В. Например, задание числа α=103 приведет к необходимости реализации про-
дольной индуктивности L=33 мкГ и поперечной емкости С=330 пФ на длине звена l=1 
см. Если увеличенную индуктивность стараться получить за счет уменьшения толщины 
внутренней жилы, то это будет сопровождаться уменьшением величины допустимого 
тока в ней. При реализации увеличения емкости с помощью дополнительных диафрагм 
также появятся ограничения на передаваемую мощность, поскольку снижается порог 
электрической прочности звена. 

 Наличие своих ограничений у разных методов реализации полнопрозрачных сред 
и структур (рис.А и рис.В) является естественным. Вместе с тем, очевидны широкие 
перспективы создания различных вариантов полнопрозрачных сред и структур, при-
способленных под различные диапазоны частот, уровни проходящей мощности, разно-
образные области применения. Электромагнитный двигатель - толкатель, описанный в 
параграфе 2.5, или покрытия-невидимки из п.2.3 либо малогабаритные антенны дека-
метрового диапазона волн (п.2.1) будут иметь разные виды исполнения полнопрозрач-
ных сред - равнопроницаемых МД. 
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